Novel Au/Cu2O multi-shelled porous heterostructures for enhanced efficiency of photoelectrochemical water splitting

被引:79
|
作者
Wang, Baoshun [1 ]
Li, Renying [1 ]
Zhang, Zhiyun [1 ]
Zhang, Weiwei [2 ]
Yan, Xiaolu [1 ]
Wu, Xiaoling [1 ,3 ]
Cheng, Guoan [1 ,3 ]
Zheng, Ruiting [1 ,3 ]
机构
[1] Beijing Normal Univ, Key Lab Radiat Beam Technol & Mat Modificat, Minist Educ, Coll Nucl Sci & Technol, Beijing 100875, Peoples R China
[2] Minzu Univ China, Sch Sci, Beijing 10081, Peoples R China
[3] Beijing Radiat Ctr, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOCATALYTIC ACTIVITY; CUPROUS-OXIDE; THIN-FILMS; CU2O; FABRICATION; GRAPHENE;
D O I
10.1039/c7ta02254a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we report novel Au/Cu2O multi-shelled porous heterostructures (MSPHs). The results of photoelectrochemical (PEC) examination indicate that the photocurrent density of the as-prepared Au/Cu2O MSPHs electrode reaches 150 mu A cm(-2), which is almost 7.5 times higher than 20 mu A cm(-2) of pure Cu2O MSP at a 0 V bias potential versus Ag/AgCl. The enhanced PEC efficiency of the Au/MSPHs is ascribed to the Schottky barrier at the Au-MSP NP interface and the surface plasmon resonance (SPR) effect of Au. We also found that Au nanoparticles deposited on the surface of Cu2O MSP could effectively adjust their band structure.
引用
收藏
页码:14415 / 14421
页数:7
相关论文
共 50 条
  • [21] Constructing SrTiO3-TiO2 Heterogeneous Hollow Multi-shelled Structures for Enhanced Solar Water Splitting
    Wei, Yanze
    Wang, Jiangyan
    Yu, Ranbo
    Wan, Jiawei
    Wang, Dan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (05) : 1422 - 1426
  • [22] Plasmon-enhanced Cu2O photocathodes for solar water splitting
    DuChene, Joseph
    Williams, Benjamin
    Johnston-Peck, Aaron
    Qiu, Jingjing
    Su, Dong
    Stach, Eric
    Wei, Wei David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [23] Cu2O photoelectrodes for solar water splitting: Tuning photoelectrochemical performance by controlled faceting
    Ma, Quan-Bao
    Hofmann, Jan P.
    Litke, Anton
    Hensen, Emiel J. M.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 141 : 178 - 186
  • [24] Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting
    Li, Zhenzhen
    Zhang, Zhonghai
    NANO RESEARCH, 2018, 11 (03) : 1530 - 1540
  • [25] Tetrafunctional Cu2S thin layers on Cu2O nanowires for efficient photoelectrochemical water splitting
    Zhenzhen Li
    Zhonghai Zhang
    Nano Research, 2018, 11 : 1530 - 1540
  • [26] Understanding the photoelectrochemical properties of nanostructured CeO2/Cu2O heterojunction photoanode for efficient photoelectrochemical water splitting
    Sharma, Dipika
    Satsangi, Vibha R.
    Shrivastau, Rohit
    Waghmare, Umesh V.
    Dass, Sahab
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (41) : 18339 - 18350
  • [27] Cu–Cu2O Nanorod-CdS heterostructures on carbon cloth for efficient photoelectrocatalytic water splitting
    Fouladvand, Maral
    Bayat, Mohsen
    Rouhollahi, Ahmad
    International Journal of Hydrogen Energy, 2025, 118 : 14 - 23
  • [28] Synthesis and enhanced bias-free photoelectrochemical water-splitting activity of ferroelectric BaTiO3/Cu2O heterostructures under solar light irradiation
    Li, Cheng
    Fang, Tianci
    Hu, Hong
    Wang, Yifan
    Liu, Xuyi
    Zhou, Sibo
    Fu, Junli
    Wang, Wenzhong
    CERAMICS INTERNATIONAL, 2021, 47 (08) : 11379 - 11386
  • [29] Improved Photoelectrochemical Water Splitting Performance of Cu2O/SrTiO3 Heterojunction Photoelectrode
    Sharma, Dipika
    Upadhyay, Sumant
    Satsangi, Vibha R.
    Shrivastav, Rohit
    Waghmare, Umesh V.
    Dass, Sahab
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (44): : 25320 - 25329
  • [30] Expanding depletion region via doping: Zn-doped Cu2O buffer layer in Cu2O photocathodes for photoelectrochemical water splitting
    Kangha Lee
    Cheol-Ho Lee
    Jun Young Cheong
    Seokwon Lee
    Il-Doo Kim
    Han-Ik Joh
    Doh Chang Lee
    Korean Journal of Chemical Engineering, 2017, 34 : 3214 - 3219