Low-regularity solutions of the periodic general Degasperis-Procesi equation

被引:2
|
作者
Tian, Lixin [1 ]
Chen, Yuexia [1 ]
Liu, Yue [2 ]
Gao, Ying [1 ]
机构
[1] Jiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
基金
中国国家自然科学基金;
关键词
Low-regularity solutions; Korteweg-de Vries equation; Camassa-Holm equation; Degasperis-Procesi equation; b-family of equations; General Degasperis-Procesi equation; KORTEWEG-DEVRIES EQUATION; SHALLOW-WATER EQUATION; BLOW-UP PHENOMENA; INITIAL-VALUE PROBLEM; CAMASSA-HOLM; GLOBAL EXISTENCE; SHOCK-WAVES; WELL-POSEDNESS; CAUCHY-PROBLEM; KDV EQUATION;
D O I
10.1016/j.na.2011.01.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies low-regularity solutions of the periodic general Degasperis-Procesi equation with an initial value. The existence and the uniqueness of solutions are proved. The results are illustrated by considering the periodic peakons of the periodic general Degasperis-Procesi equation. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2802 / 2812
页数:11
相关论文
共 50 条