Proton irradiation effects on deep level states in Mg-doped p-type GaN grown by ammonia-based molecular beam epitaxy

被引:31
|
作者
Zhang, Z. [1 ]
Arehart, A. R. [1 ]
Kyle, E. C. H. [2 ]
Chen, J. [3 ]
Zhang, E. X. [3 ]
Fleetwood, D. M. [3 ]
Schrimpf, R. D. [3 ]
Speck, J. S. [2 ]
Ringel, S. A. [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[3] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
关键词
ELECTRON-MOBILITY TRANSISTORS; N-GAN; HYDROGEN PASSIVATION; DEFECTS; HETEROSTRUCTURES; CONDUCTIVITY; DISLOCATIONS; IMPLANTATION; LUMINESCENCE; SCHOTTKY;
D O I
10.1063/1.4905783
中图分类号
O59 [应用物理学];
学科分类号
摘要
The impact of proton irradiation on the deep level states throughout the Mg-doped p-type GaN bandgap is investigated using deep level transient and optical spectroscopies. Exposure to 1.8 MeV protons of 1 x 10(13) cm(-2) and 3 x 10(13) cm(-2) fluences not only introduces a trap with an E-V + 1.02 eV activation energy but also brings monotonic increases in concentration for as-grown deep states at E-V + 0.48 eV, E-V + 2.42 eV, E-V + 3.00 eV, and E-V + 3.28 eV. The non-uniform sensitivities for individual states suggest different physical sources and/or defect generation mechanisms. Comparing with prior theoretical calculations reveals that several traps are consistent with associations to nitrogen vacancy, nitrogen interstitial, and gallium vacancy origins, and thus are likely generated through displacing nitrogen and gallium atoms from the crystal lattice in proton irradiation environment. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Mg-doped p-type GaN grown by reactive molecular beam epitaxy
    Kim, W
    Salvador, A
    Botchkarev, AE
    Aktas, O
    Mohammad, SN
    Morcoc, H
    APPLIED PHYSICS LETTERS, 1996, 69 (04) : 559 - 561
  • [2] P-type Mg-doped GaN grown by molecular beam epitaxy using ammonia as the nitrogen source
    Yang, Z
    Li, LK
    Wang, WI
    GALLIUM NITRIDE AND RELATED MATERIALS, 1996, 395 : 169 - 173
  • [3] Effects of growth temperature on Mg-doped GaN grown by ammonia molecular beam epitaxy
    Hurni, Christophe A.
    Lang, Jordan R.
    Burke, Peter G.
    Speck, James S.
    APPLIED PHYSICS LETTERS, 2012, 101 (10)
  • [4] Vacancy-type defects in Mg-doped GaN grown by ammonia-based molecular beam epitaxy probed using a monoenergetic positron beam
    Uedono, Akira
    Malinverni, Marco
    Martin, Denis
    Okumura, Hironori
    Ishibashi, Shoji
    Grandjean, Nicolas
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (24)
  • [5] Electrical and luminescence properties of Mg-doped p-type GaPN grown by molecular beam epitaxy
    Mitsuyoshi, S.
    Umeno, K.
    Furukawa, Y.
    Urakami, N.
    Wakahara, A.
    Yonezu, H.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 10, 2010, 7 (10): : 2498 - 2501
  • [6] Deep level defects in Mg-doped, p-type GaN grown by metalorganic chemical vapor deposition
    Gotz, W
    Johnson, NM
    Bour, DP
    APPLIED PHYSICS LETTERS, 1996, 68 (24) : 3470 - 3472
  • [7] Local vibrational modes in Mg-doped GaN grown by molecular beam epitaxy
    Kaschner, A
    Siegle, H
    Kaczmarczyk, G
    Strassburg, M
    Hoffmann, A
    Thomsen, C
    Birkle, U
    Einfeldt, S
    Hommel, D
    APPLIED PHYSICS LETTERS, 1999, 74 (22) : 3281 - 3283
  • [8] Comparison of deep level spectra in p-type and n-type GaN grown by molecular beam epitaxy
    Armstrong, A.
    Poblenz, C.
    Mishra, U. K.
    Speck, J. S.
    Ringel, S. A.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (06): : 1867 - 1871
  • [9] Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy
    Zhang, Z.
    Hurni, C. A.
    Arehart, A. R.
    Yang, J.
    Myers, R. C.
    Speck, J. S.
    Ringel, S. A.
    APPLIED PHYSICS LETTERS, 2012, 100 (05)
  • [10] Detailed deep trap analysis in Mg-doped p-type GaN layers grown by MOVPE
    Witte, H
    Krtschil, A
    Lisker, M
    Krost, A
    Christen, J
    Kuhn, B
    Scholz, F
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 82 (1-3): : 85 - 87