GABAergic and glycinergic inhibition sharpens tuning for frequency modulations in the inferior colliculus of the big brown bat

被引:96
|
作者
Koch, U [1 ]
Grothe, B [1 ]
机构
[1] Ludwigs Maximillian Univ, Inst Zool, D-80333 Munich, Germany
关键词
D O I
10.1152/jn.1998.80.1.71
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Discrimination of amplitude and frequency modulated sounds is an important task of auditory processing. Experiments have shown that tuning of neurons to sinusoidally frequency- and amplitude-modulated (SFM and SAM, respectively) sounds becomes successively narrower going from lower to higher auditory brain stem nuclei. In the inferior colliculus (IC), many neurons are sharply tuned to the modulation frequency of SFM sounds. The purpose of this study was to determine whether GABAergic or glycinergic inhibition is involved in shaping the tuning for the modulation frequency of SFM sounds in IC neurons of the big brown bat (Eptesicus fuscus). We recorded the response of 56 single units in the central nucleus of the IC to SFM stimuli before and during the application of the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline or the glycine receptor antagonist strychnine. To evaluate tuning to the modulation frequency, the normalized spike count (normalized according to the maximal response for each condition tested) was plotted versus the modulation frequency and the upper and lower 50% cutoff points were determined. Bicuculline increased the upper cutoff in 46% of the neurons by greater than or equal to 25%. The lower cutoff decreased in 48% of the neurons tested. In some neurons (similar to 30%), a sharpening of the tuning by bicuculline was observed. Strychnine induced an increase of the upper cutoff in almost half of the neurons. Compared with bicuculline these changes were smaller. The lower cutoff decreased in 50% of the neurons with strychnine. The synchronization coefficient (SC) was calculated and compared for three modulation frequencies (50, 100, and 200 Hz) between predrug and drug condition. For all neurons, synchronization decreased (n = 36) or did not change (n = 26) during drug application. This was mainly an effect of the prolonged discharge in response to each cycle. Under predrug conditions, many neurons exhibited selectivity to the direction of the FM, hence they only responded once to each cycle. In a minority of neurons, direction selectivity was abolished by drug application. The main finding was that neuronal inhibition sharpens tuning to the modulation frequency in the majority of neurons. In general, changes induced by bicuculline or strychnine were comparable.
引用
收藏
页码:71 / 82
页数:12
相关论文
共 50 条
  • [31] GABAergic Inhibition Sharpens the Frequency Tuning and Enhances Phase Locking in Chicken Nucleus Magnocellularis Neurons
    Fukui, Iwao
    Burger, R. Michael
    Ohmori, Harunori
    Rubel, Edwin W.
    JOURNAL OF NEUROSCIENCE, 2010, 30 (36): : 12075 - 12083
  • [32] Spectral integration in the inferior colliculus: Role of glycinergic inhibition in response facilitation
    Wenstrup, JJ
    Leroy, SA
    JOURNAL OF NEUROSCIENCE, 2001, 21 (03):
  • [33] Stimulus-specific adaptation in specialized neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus
    Thomas, Jessica M.
    Morse, Christina
    Kishline, Lindsey
    O'Brien-Lambert, Alex
    Simonton, Ariel
    Miller, Kimberly E.
    Covey, Ellen
    HEARING RESEARCH, 2012, 291 (1-2) : 34 - 40
  • [34] Dichotic sound localization properties of duration-tuned neurons in the inferior colliculus of the big brown bat
    Sayegh, Riziq
    Aubie, Brandon
    Faure, Paul A.
    FRONTIERS IN PHYSIOLOGY, 2014, 5
  • [35] Relation between intrinsic connections and isofrequency contours in the inferior colliculus of the big brown bat, Eptesicus fuscus
    Miller, KE
    Casseday, JH
    Covey, E
    NEUROSCIENCE, 2005, 136 (03) : 895 - 905
  • [36] AUDITORY PHYSIOLOGICAL-PROPERTIES OF THE NEURONS IN THE INFERIOR COLLICULUS OF THE BIG BROWN BAT, EPTESICUS-FUSCUS
    JEN, PHS
    SCHLEGEL, PA
    JOURNAL OF COMPARATIVE PHYSIOLOGY, 1982, 147 (03): : 351 - 363
  • [37] Frequency tuning and latency organization of responses in the inferior colliculus of Japanese house bat, Pipistrellus abramus
    Goto, Kazuhiro
    Hiryu, Shizuko
    Riquimaroux, Hiroshi
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 128 (03): : 1452 - 1459
  • [38] GABAergic inhibition and the effect of sound direction on rate-intensity functions of inferior collicular neurons of the big brown bat, Eptesicus fuscus
    Jen, PHS
    Feng, RB
    Chen, B
    CHINESE JOURNAL OF PHYSIOLOGY, 2003, 46 (02): : 83 - 90
  • [39] Frequency tuning, latencies, and responses to frequency-modulated sweeps in the inferior colliculus of the echolocating bat, Eptesicus fuscus
    Ferragamo, MJ
    Haresign, T
    Simmons, JA
    JOURNAL OF COMPARATIVE PHYSIOLOGY A-SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY, 1998, 182 (01): : 65 - 79
  • [40] Frequency tuning, latencies, and responses to frequency-modulated sweeps in the inferior colliculus of the echolocating bat, Eptesicus fuscus
    Ferragamo M.J.
    Haresign T.
    Simmons J.A.
    Journal of Comparative Physiology A, 1997, 182 (1): : 65 - 79