The role of molybdenum in suppressing cold dwell fatigue in titanium alloys

被引:14
|
作者
Ready, Adam J. [1 ]
Haynes, Peter D. [2 ]
Grabowski, Blazej [3 ]
Rugg, David [4 ]
Sutton, Adrian P. [1 ]
机构
[1] Imperial Coll London, Dept Phys, Exhibit Rd, London SW7 2AZ, England
[2] Imperial Coll London, Dept Mat, Exhibit Rd, London SW7 2AZ, England
[3] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
[4] Rolls Royce PLC, Elston Rd, Derby DE24 8BJ, England
基金
英国工程与自然科学研究理事会;
关键词
cold dwell fatigue; Mo; Ti; density functional theory; point defects; hexagonal close-packed; PERIODIC BOUNDARY-CONDITIONS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; CRYSTAL PLASTICITY FE; AUGMENTED-WAVE METHOD; AB-INITIO; VACANCY FORMATION; ALPHA-TI; ULTRASOFT PSEUDOPOTENTIALS; DIFFUSION-COEFFICIENTS;
D O I
10.1098/rspa.2017.0189
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We test a hypothesis to explain why Ti-6242 is susceptible to cold dwell fatigue (CDF), whereas Ti-6246 is not. The hypothesis is that, in Ti-6246, substitutional Mo-atoms in alpha-Ti grains trap vacancies, thereby limiting creep relaxation. In Ti-6242, this creep relaxation enhances the loading of grains unfavourably oriented for slip and they subsequently fracture. Using density functional theory to calculate formation and binding energies between Mo-atoms and vacancies, we find no support for the hypothesis. In the light of this result, and experimental observations of the microstructures in these alloys, we agree with the recent suggestion (Qiu et al. 2014 Metall. Mater. Trans. A 45, 6075-6087. (doi:10.1007/s11661-014-2541-5)) that Ti-6246 has a much smaller susceptibility to CDF because it has a smaller grain size and a more homogeneous distribution of grain orientations. We propose that the reduction of the susceptibility to CDF of Ti-6242 at temperatures above about 200 degrees C is due to the activation of < c + a > slip in 'hard' grains, which reduces the loading of grain boundaries.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Influence of hydrogen on dwell-fatigue response of near-alpha titanium alloys
    Sinha, V
    Schwarz, R. B.
    Mills, M. J.
    Williams, J. C.
    ACTA MATERIALIA, 2020, 188 : 315 - 327
  • [32] ON FATIGUE CRACK-PROPAGATION OF TITANIUM-ALLOYS UNDER DWELL TIME CONDITIONS
    SOMMER, AW
    EYLON, D
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1983, 14 (10): : 2178 - 2181
  • [33] Novel Experimentation for the Validation of Mechanistic Models to Describe Cold Dwell Sensitivity in Titanium Alloys
    Sackett, Elizabeth E.
    Bache, Martin R.
    METALS, 2021, 11 (09)
  • [34] Discrepancy between fatigue and dwell-fatigue behavior of near alpha titanium alloys simulated by cellular automata
    Boutana, N.
    Bocher, P.
    Jahazi, M.
    INTERNATIONAL JOURNAL OF FATIGUE, 2013, 51 : 49 - 56
  • [35] The role of dwell hold on the dislocation mechanisms of fatigue in a near alpha titanium alloy
    Joseph, S.
    Joseph, K.
    Lindley, T. C.
    Dye, D.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2020, 131 (131)
  • [36] FATIGUE CRACK-PROPAGATION OF TITANIUM-ALLOYS UNDER DWELL-TIME CONDITIONS
    BANIA, PJ
    EYLON, D
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1978, 9 (06): : 847 - 855
  • [37] How Texture and Microtexture Influence Dwell Fatigue Lifetime in Forged IMI834 Titanium Alloys
    Gey, N.
    Bocher, P.
    Uta, E.
    Humbert, M.
    Gilgert, J.
    TI-2011: PROCEEDINGS OF THE 12TH WORLD CONFERENCE ON TITANIUM, VOL II, 2012, : 879 - 882
  • [38] Texture-dependent dwell fatigue response of titanium
    Yazar, K. U.
    Shamitha, M.
    Suwas, Satyam
    PHILOSOPHICAL MAGAZINE, 2021, 101 (12) : 1443 - 1470
  • [39] Dwell Fatigue Microstructure in a Near-α Titanium Alloy
    X. Wang
    P. Vo
    M. Jahazi
    S. Yue
    Metallurgical and Materials Transactions A, 2007, 38 : 831 - 839
  • [40] Dwell fatigue microstructure in a near-α titanium alloy
    Wang, X.
    Vo, P.
    Jahazi, M.
    Yue, S.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2007, 38A (04): : 831 - 839