Energy dissipative time finite elements for classical mechanics

被引:6
|
作者
Bui, QV [1 ]
机构
[1] Univ Liege, Inst Mech, LTAS, Continuum & Thermodynam Mech Dept, B-4000 Liege 1, Belgium
关键词
time continuous Galerkin method; time finite element; integration scheme; dissipative system; Hamilton's equations;
D O I
10.1016/S0045-7825(03)00310-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based upon the temporal discretisation of Hamilton's canonical equations by means of the continuous Galerkin method, a Petrov-Galerkin time finite element formulation is presented to analyse non-linear mechanical systems for long time integration with the presence of dissipation. The time-stepping scheme features a correct estimation of physical dissipative energy for mechanical systems with weak dissipation. This enables to introduce a moderate numerical dissipation to damp out undesired spurious high frequency modes in a controllable manner. Numerical examples are performed to demonstrate that the proposed scheme allows us to obtain a correct amount by which the energy changes over the integration run. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:2925 / 2947
页数:23
相关论文
共 50 条
  • [11] Time in classical and in quantum mechanics
    Elci, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (28)
  • [12] Classical dissipative function at finite mean free path
    Aleshin, VP
    ACTA PHYSICA POLONICA B, 1999, 30 (03): : 461 - 467
  • [13] The method of finite elements in conformational mechanics
    Landre Jr., Jánes
    De Melo Pertence, Antônio Eustáquio
    Cetlin, Paulo Roberto
    Dos Santas, Carlos Auguste
    Da Silva, Gilmar Cordeiro
    Metalurgia e Materiais, 2002, 58 (528): : 818 - 819
  • [14] Classical dissipative function at finite mean free path
    Acta Phys Pol Ser B, 3 (461-468):
  • [15] Formulation of finite elements for elastoacoustic problems with dissipative interface
    Larbi, Walid
    Deu, Jean-Francois
    Ohayon, Roger
    EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS, 2006, 15 (1-3): : 245 - 256
  • [16] ENERGY SPECTRUM ACCORDING TO CLASSICAL MECHANICS
    GUTZWILL.MC
    JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (06) : 1791 - &
  • [17] Time in classical mechanics and in theory of relativity
    Le Roux, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1921, 173 : 1074 - 1077
  • [18] FINITE-ELEMENTS OF SHELLS IN CONSTRUCTION MECHANICS
    GAZIZOV, KS
    ZHERNAKOV, VS
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 1994, (02): : 74 - 76
  • [19] Editorial - On finite elements for nonlinear solid mechanics
    Armero, F
    Dvorkin, EN
    COMPUTERS & STRUCTURES, 2000, 75 (03) : 235 - 235
  • [20] WILL FINITE-ELEMENTS REPLACE STRUCTURAL MECHANICS
    OJALVO, IU
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1984, 450 : 110 - 117