Weighted upper metric mean dimension for amenable group actions

被引:3
|
作者
Tang, Dingxuan [1 ]
Wu, Haiyan [1 ]
Li, Zhiming [1 ]
机构
[1] Northwest Univ, Sch Math, Xian, Shaanxi, Peoples R China
来源
基金
以色列科学基金会; 中国国家自然科学基金;
关键词
Weighted upper mean dimension; variational principle; amenable group; pseudo-orbits; TOPOLOGICAL DIMENSION;
D O I
10.1080/14689367.2019.1709047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we formulate the notions of weighted upper metric mean dimensions and weighted upper measure-theoretic mean dimensions for amenable group actions. In particular, a variational principle for amenable group actions is presented. We also define weighted upper metric mean dimensions with respect to pseudo-orbits and establish their relation to weighted upper metric mean dimensions.
引用
收藏
页码:382 / 397
页数:16
相关论文
共 50 条
  • [31] Relative Entropy and Mean Li-Yorke Chaos for Biorderable Amenable Group Actions
    Yan, Kesong
    Zeng, Fanping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (02):
  • [32] Algebraic entropy of amenable group actions
    Virili, Simone
    MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (3-4) : 1389 - 1417
  • [33] GENERATORS FOR AMENABLE GROUP-ACTIONS
    SUJAN, S
    MONATSHEFTE FUR MATHEMATIK, 1983, 95 (01): : 67 - 79
  • [34] ON LARGE DEVIATIONS FOR AMENABLE GROUP ACTIONS
    Zheng, Dongmei
    Chen, Ercai
    Yang, Jiahong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (12) : 7191 - 7206
  • [35] DISCRETE SPECTRUM FOR AMENABLE GROUP ACTIONS
    Yu, Tao
    Zhang, Guohua
    Zhang, Ruifeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (12) : 5871 - 5886
  • [36] A variational principle of amenable random metric mean dimensions
    Tang, Dingxuan
    Li, Zhiming
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024,
  • [38] Minimal amenable subshift with full mean topological dimension
    Yin, Zhengyu
    Xiao, Zubiao
    NONLINEARITY, 2024, 37 (11)
  • [39] Weighted mean topological dimension
    Wang, Yunping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (01)
  • [40] Localized topological pressure for amenable group actions
    Wang, Yunping
    Zhao, Cao
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)