Deformation vector fields (DVF)-driven image reconstruction for 4D-CBCT

被引:8
|
作者
Dang, Jun [1 ]
Luo, Ouyang [1 ]
Gu, Xuejun [1 ]
Wang, Jing [1 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX 75235 USA
关键词
DVF estimation from projection; 4D-CBCT; DVF-driven image reconstruction; CONE-BEAM CT; 3D TUMOR-LOCALIZATION; COMPUTED-TOMOGRAPHY; RESPIRATORY MOTION; PROJECTION DATA; REAL-TIME; MODEL; REGISTRATION; ALGORITHMS;
D O I
10.3233/XST-140466
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
BACKGROUND: High quality 4D-CBCT can be obtained by deforming a planning CT (pCT), where the deformation vector fields (DVF) are estimated by matching the forward projections of pCT and 4D-CBCT projections. The matching metric used in the previous study is the sum of squared intensity differences (SSID). The scatter signal level in CBCT projections is much higher than pCT, the SSID metric may not lead to optimal DVF. OBJECTIVE: To improve the DVF estimation accuracy, we develop a new matching metric that is less sensitive to the intensity level difference caused by the scatter signal. METHODS: The negative logarithm of correlation coefficient (NLCC) is used as the matching metric. A non-linear conjugate gradient optimization algorithm is used to estimate the DVF. A 4D NCAT phantom and an anthropomorphic thoracic phantom were used to evaluate the NLCC-based algorithm. RESULTS: In the NCAT phantom study, the relative reconstruction error is reduced from 18.0% in SSID to 14.13% in NLCC. In the thoracic phantom study, the root mean square error of the tumor motion is reduced from 1.16 mm in SSID to 0.43 mm in NLCC. CONCLUSION: NLCC metric can improve the image reconstruction and motion estimation accuracy of DVF-driven image reconstruction for 4D-CBCT.
引用
收藏
页码:11 / 23
页数:13
相关论文
共 50 条
  • [41] Patient-Specific Deep Learning Model for Enhancing 4D-CBCT Image for Radiomic Analysis
    Zhang, Z.
    Huang, M.
    Jiang, Z.
    Chang, Y.
    Lu, K.
    Yin, F.
    Ren, L.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [42] Ventilation measured on clinical 4D-CBCT: Increased ventilation accuracy through improved image quality
    Jensen, Kasper R.
    Brink, Carsten
    Hansen, Olfred
    Bernchou, Uffe
    RADIOTHERAPY AND ONCOLOGY, 2017, 125 (03) : 459 - 463
  • [43] Patient-specific deep learning model to enhance 4D-CBCT image for radiomics analysis
    Zhang, Zeyu
    Huang, Mi
    Jiang, Zhuoran
    Chang, Yushi
    Lu, Ke
    Yin, Fang-Fang
    Phuoc Tran
    Wu, Dapeng
    Beltran, Chris
    Ren, Lei
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (08):
  • [44] A Novel Technique for Markerless Self-Sorted 4D-CBCT
    Vergalasova, I.
    Cai, J.
    Yin, F.
    MEDICAL PHYSICS, 2011, 38 (06)
  • [45] Using 4D-CBCT in Single-Fraction Lung SBRT
    Qi, P.
    Balik, S.
    Zhuang, T.
    Lu, L.
    Videtic, G.
    Stephans, K.
    Xia, P.
    MEDICAL PHYSICS, 2022, 49 (06) : E388 - E388
  • [46] Image quality of in-treatment 4D-CBCT obtained at various doses in VMAT for SBRT: a phantom study
    Shimohigashi, Y.
    Doi, Y.
    Maruyama, M.
    Yotsuji, Y.
    Kai, Y.
    Toya, R.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S1066 - S1067
  • [47] Comparison of Patient-Specific Deep Learning Models for Enhancing 4D-CBCT Image for Radiomics Analysis
    Zhang, Z.
    Huang, M.
    Jiang, Z.
    Chang, Y.
    Lu, K.
    Qiao, Z.
    Yin, F.
    Tran, P.
    Wu, D.
    Beltran, C.
    Ren, L.
    MEDICAL PHYSICS, 2022, 49 (06) : E634 - E634
  • [48] Characterizing Inter-Fraction Motion Variation for Lung SBRT Patients Using 4D-CBCT Reconstructed by Simultaneous Motion Estimation and Image Reconstruction
    Huang, X.
    Zhang, Y.
    Wang, J.
    MEDICAL PHYSICS, 2018, 45 (06) : E180 - E180
  • [49] 4D-CBCT frameless image guidance in lung SBRT: Comparison between 4D automatic fusion algorithm and manual fusion
    Gomez-Tejedor Alonso, S.
    Diaz Silvera, C.
    Rincon Perez, M.
    Penedo Cobos, J. M.
    Garcia Castejon, M. A.
    Luna Tirado, J.
    Perez Casas, A. M.
    RADIOTHERAPY AND ONCOLOGY, 2015, 115 : S815 - S815
  • [50] Deep Learning-Based Simultaneous Multi-Phase Deformable Image Registration of Sparse 4D-CBCT
    Herzig, I.
    Paysan, P.
    Scheib, S.
    Schilling, F-P
    Montoya, J.
    Amirian, M.
    Stadelmann, T.
    Eggenberger, P.
    Fuechslin, R.
    Lichtensteiger, L.
    MEDICAL PHYSICS, 2022, 49 (06) : E325 - E326