Thermal resistance network model for heat conduction of amorphous polymers

被引:27
|
作者
Zhou, Jun [1 ]
Xi, Qing [1 ]
He, Jixiong [2 ]
Xu, Xiangfan [1 ]
Nakayama, Tsuneyoshi [1 ,3 ]
Wang, Yuanyuan [4 ]
Liu, Jun [2 ]
机构
[1] Tongji Univ, Ctr Phonon & Thermal Energy Sci, China EU Joint Lab Nanophonon, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[2] North Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA
[3] Hokkaido Univ, Dept Appl Phys, Sapporo, Hokkaido 0600826, Japan
[4] Shanghai Polytech Univ, Sch Environm & Mat Engn, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CROSS-LINKED POLYMERS; TRANSITION;
D O I
10.1103/PhysRevMaterials.4.015601
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermal conductivities (TCs) of the vast majority of amorphous polymers are in a very narrow range, 0.1-0.5 W m(-1) K-1, although single polymer chains possess TCs of orders of magnitude higher. The chemical structure of polymer chains plays an important role in determining the TC of bulk polymers. We propose a thermal resistance network (TRN) model for the TC in amorphous polymers taking into account the chemical structure of molecular chains. Our model elucidates the physical origin of the low TC universally observed in amorphous polymers with various chemical structures. The empirical formulas of the pressure and temperature dependence of TC can be successfully reproduced not only in solid polymers but also in polymer melts. We further quantitatively explain the anisotropic TC in oriented polymers.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] The equivalent thermal network for the model of heat exchanger
    Piotrowska, Ewa
    Chochowski, Andrzej
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (10A): : 115 - 120
  • [42] Coupled heat conduction and multiphase change problem accounting for thermal contact resistance
    Weisz-Patrault, Daniel
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 : 595 - 606
  • [43] A Model of Heat Conduction
    P. Collet
    J. -P. Eckmann
    Communications in Mathematical Physics, 2009, 287 : 1015 - 1038
  • [44] A Model of Heat Conduction
    Collet, P.
    Eckmann, J. -P.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (03) : 1015 - 1038
  • [45] THERMAL EXPANSION AND COMPRESSIBILITY OF AMORPHOUS POLYMERS
    ISHINABE, T
    ISHIKAWA, K
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1968, 7 (05) : 462 - &
  • [46] Inverse heat conduction model for the resistance spot welding of aluminum alloy
    Zhao, Chunfeng
    Luo, Zhen
    Li, Yang
    Feng, Mengnan
    Xuan, Wenbo
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2016, 70 (12) : 1330 - 1344
  • [47] THERMAL-CONDUCTIVITIES OF AMORPHOUS POLYMERS
    HANDS, D
    LANE, K
    SHELDON, RP
    JOURNAL OF POLYMER SCIENCE PART C-POLYMER SYMPOSIUM, 1973, (42): : 717 - 726
  • [48] Insights into the Thermal Expansion of Amorphous Polymers
    Eim, Sungoh
    Jo, Seungyun
    Kim, Junsu
    Park, Sungmin
    Lee, Dongjun
    Russell, Thomas P.
    Ryu, Du Yeol
    ACS MACRO LETTERS, 2024, 13 (11) : 1490 - 1494
  • [49] Superconductors thermal stability under the effect of the hyperbolic heat conduction model
    Al-Nimr, MA
    Odat, MQ
    Hamdan, M
    JSME INTERNATIONAL JOURNAL SERIES B-FLUIDS AND THERMAL ENGINEERING, 2002, 45 (02) : 432 - 438
  • [50] Identification of the Thermal Conductivity Coefficient in the Heat Conduction Model with Fractional Derivative
    Brociek, R.
    Slota, D.
    ARCHIVES OF FOUNDRY ENGINEERING, 2019, 19 (03) : 38 - 42