Thermal resistance network model for heat conduction of amorphous polymers

被引:27
|
作者
Zhou, Jun [1 ]
Xi, Qing [1 ]
He, Jixiong [2 ]
Xu, Xiangfan [1 ]
Nakayama, Tsuneyoshi [1 ,3 ]
Wang, Yuanyuan [4 ]
Liu, Jun [2 ]
机构
[1] Tongji Univ, Ctr Phonon & Thermal Energy Sci, China EU Joint Lab Nanophonon, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[2] North Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA
[3] Hokkaido Univ, Dept Appl Phys, Sapporo, Hokkaido 0600826, Japan
[4] Shanghai Polytech Univ, Sch Environm & Mat Engn, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CROSS-LINKED POLYMERS; TRANSITION;
D O I
10.1103/PhysRevMaterials.4.015601
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The thermal conductivities (TCs) of the vast majority of amorphous polymers are in a very narrow range, 0.1-0.5 W m(-1) K-1, although single polymer chains possess TCs of orders of magnitude higher. The chemical structure of polymer chains plays an important role in determining the TC of bulk polymers. We propose a thermal resistance network (TRN) model for the TC in amorphous polymers taking into account the chemical structure of molecular chains. Our model elucidates the physical origin of the low TC universally observed in amorphous polymers with various chemical structures. The empirical formulas of the pressure and temperature dependence of TC can be successfully reproduced not only in solid polymers but also in polymer melts. We further quantitatively explain the anisotropic TC in oriented polymers.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Effect of crosslink formation on heat conduction in amorphous polymers
    Kikugawa, Gota
    Desai, Tapan G.
    Keblinski, Pawel
    Ohara, Taku
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (03)
  • [2] Effect of crosslink formation on heat conduction in amorphous polymers
    Kikugawa, G. (kikugawa@microheat.ifs.tohoku.ac.jp), 1600, American Institute of Physics Inc. (114):
  • [3] HEAT CONDUCTION IN LINEAR AMORPHOUS HIGH POLYMERS - ORIENTATION ANISOTROPY
    WASHO, BD
    HANSEN, D
    JOURNAL OF APPLIED PHYSICS, 1969, 40 (06) : 2423 - &
  • [4] An embedded discontinuity peridynamic model for nonlocal heat conduction with interfacial thermal resistance
    Zhao, Teng
    Shen, Yongxing
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 175
  • [5] THERMAL BEHAVIOR OF HEAT-TREATED AMORPHOUS POLYMERS
    HATAKEYAMA, T
    KANATSUN.H
    CHEMISTRY OF HIGH POLYMERS, 1969, 26 (285): : 68 - +
  • [6] Thermal resistance network model for heat sinks with serpentine channels
    Hao, Xiao-Hong
    Li, Xue-Kang
    Peng, Bei
    Zhang, Ming
    Zhu, Yu
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2014, 27 (02) : 298 - 308
  • [7] A MODEL FOR THE SPECIFIC-HEAT OF AMORPHOUS POLYMERS
    ALLEN, JP
    JOURNAL OF CHEMICAL PHYSICS, 1986, 84 (08): : 4680 - 4683
  • [8] ELECTRIC CONDUCTION IN AMORPHOUS POLYMERS
    KIESS, H
    REHWALD, W
    COLLOID AND POLYMER SCIENCE, 1980, 258 (03) : 241 - 251
  • [9] A thermal resistance model of conduction–thermal radiation heat transfer in pebble-bed nuclear reactors
    Hao Wu
    Fenglei Niu
    Nan Gui
    Xingtuan Yang
    Jiyuan Tu
    Shengyao Jiang
    Experimental and Computational Multiphase Flow, 2024, 6 : 59 - 66
  • [10] Interfacial thermal resistance in phonon hydrodynamic heat conduction
    Nie, Ben-Dian
    Cao, Bing-Yang
    JOURNAL OF APPLIED PHYSICS, 2022, 131 (06)