Bandwidth selection in kernel density estimation for interval-grouped data

被引:3
|
作者
Reyes, Miguel [1 ]
Francisco-Fernandez, Mario [2 ]
Cao, Ricardo [2 ]
机构
[1] Ctr Invest Matemat, Jalisco S-N, Guanajuato 36240, Gto, Mexico
[2] Univ A Coruna, Res Grp MODES, Dept Matemat, Fac Informat, Elvina 15071, A Coruna, Spain
关键词
Smoothing parameter selection; Plug-in bandwidth; Bootstrap bandwidth selector; Interval data; BOOTSTRAP CHOICE;
D O I
10.1007/s11749-017-0523-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When interval-grouped data are available, the classical Parzen-Rosenblatt kernel density estimator has to be modified to get a computable and useful approach in this context. The new nonparametric grouped data estimator needs of the choice of a smoothing parameter. In this paper, two different bandwidth selectors for this estimator are analyzed. A plug-in bandwidth selector is proposed and its relative rate of convergence obtained. Additionally, a bootstrap algorithm to select the bandwidth in this framework is designed. This method is easy to implement and does not require Monte Carlo. Both proposals are compared through simulations in different scenarios. It is observed that when the sample size is medium or large and grouping is not heavy, both bandwidth selection methods have a similar and good performance. However, when the sample size is large and under heavy grouping scenarios, the bootstrap bandwidth selector leads to better results.
引用
收藏
页码:527 / 545
页数:19
相关论文
共 50 条
  • [1] Bandwidth selection in kernel density estimation for interval-grouped data
    Miguel Reyes
    Mario Francisco-Fernández
    Ricardo Cao
    TEST, 2017, 26 : 527 - 545
  • [2] Checking the grouped data version of the cox model for interval-grouped survival data
    Pipper, Christian B.
    Ritz, Christian
    SCANDINAVIAN JOURNAL OF STATISTICS, 2007, 34 (02) : 405 - 418
  • [3] On bandwidth selection in kernel density estimation
    Ushakov, N. G.
    Ushakov, V. G.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (02) : 419 - 428
  • [4] Bandwidth selection for kernel density estimation with doubly truncated data
    Moreira, C.
    Van Keilegom, I.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 61 : 107 - 123
  • [5] Bayes bandwidth selection in kernel density estimation with censored data
    Kulasekera, K. B.
    Padgett, W. J.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2006, 18 (02) : 129 - 143
  • [6] Plug-in Bandwidth Selection for Kernel Density Estimation with Discrete Data
    Chu, Chi-Yang
    Henderson, Daniel J.
    Parmeter, Christopher F.
    ECONOMETRICS, 2015, 3 (02): : 199 - 214
  • [8] Bandwidth selection for kernel density estimation with length-biased data
    Borrajo, M. I.
    Gonzalez-Manteiga, W.
    Martinez-Miranda, M. D.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (03) : 636 - 668
  • [10] Progress in data-based bandwidth selection for Kernel density estimation
    Jones, MC
    Marron, JS
    Sheather, SJ
    COMPUTATIONAL STATISTICS, 1996, 11 (03) : 337 - 381