The Moore-Penrose inverse of a partitioned nonnegative definite matrix

被引:6
|
作者
Gross, J [1 ]
机构
[1] Univ Dortmund, Dept Stat, D-44221 Dortmund, Germany
关键词
Banachiewicz inversion formula; generalized inverse; Lowner partial ordering; rank; Schur complement;
D O I
10.1016/S0024-3795(99)00073-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider an arbitrary symmetric nonnegative definite matrix A and its Moore-Penrose inverse A(+), partitioned, respectively as A = ((E)(F') (F)(H)) and A(+) = ((Gt)(G2)(G2')(G4)). Explicit expressions for G(1), G(2) and G(4) in terms of E, F and H are given. Moreover, it is proved that the generalized Schur complement (A(+)/G(4)) = G(1) - G(2)G(4)(+)G'(2) is always below the Moore-Penrose inverse (A/H)(+) of the generalized Schur complement (A/H) = E - FH+F' with respect to the Lowner partial ordering. (C) 2000 Elsevier Science Inc. All rights reserved. AMS classification: 15A09.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [21] Weighted Moore-Penrose Inverse of a Fuzzy Matrix
    Cheng, Shi-zhen
    Li, Hong-xing
    FUZZY INFORMATION AND ENGINEERING, VOLUME 2, 2009, 62 : 573 - +
  • [22] ON THE MOORE-PENROSE INVERSE OF A COMPLETELY SYMMETRICAL MATRIX
    TRENKLER, G
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1994, 49 (3-4) : 230 - 231
  • [23] FAST COMPUTING OF THE MOORE-PENROSE INVERSE MATRIX
    Katsikis, Vasilios N.
    Pappas, Dimitrios
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2008, 17 : 637 - 650
  • [24] The density of the Moore-Penrose inverse of a random matrix
    Inst. of Actuar. Sci. and Economet., University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, Netherlands
    Linear Algebra Its Appl, (123-126):
  • [25] Density of the Moore-Penrose inverse of a random matrix
    Linear Algebra Its Appl, (123):
  • [26] A simple expression for the Moore-Penrose inverse of the duplication matrix
    Neudecker, H
    ECONOMETRIC THEORY, 1996, 12 (02) : 404 - 404
  • [27] Moore-Penrose inverse of a hollow symmetric matrix and a predistance matrix
    Kurata, Hiroshi
    Bapat, Ravindra B.
    SPECIAL MATRICES, 2016, 4 (01): : 270 - 282
  • [28] THE MOORE-PENROSE INVERSE OF THE DISTANCE MATRIX OF A HELM GRAPH
    Jeyaraman, I.
    Divyadevi, T.
    Azhagendran, R.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2023, 39 : 94 - 109
  • [29] A Representation of Moore-Penrose Inverse of a Matrix by Its Submatrices
    Zhang, Guowan
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 413 - 416
  • [30] An improved method for the computation of the Moore-Penrose inverse matrix
    Katsikis, Vasilios N.
    Pappas, Dimitrios
    Petralias, Athanassios
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (23) : 9828 - 9834