Context-based video frame interpolation via depthwise over-parameterized convolution

被引:0
|
作者
Zhang, Haoran [1 ,2 ]
Yang, Xiaohui [1 ,2 ]
Feng, Zhiquan [1 ,2 ]
机构
[1] Univ Jinan, Shandong Prov Key Lab Network Based Intelligent C, Jinan, Peoples R China
[2] Univ Jinan, Sch Informat Sci & Engn, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
context information; deep learning; depthwise over-parameterized convolution; frame interpolation; frame-rate up-conversion;
D O I
10.1117/1.JEI.30.6.063004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Video frame interpolation is used to generate intermediate frames by estimating the movement of pixels between the input frames. However, problems of blurring, object occlusion, and sudden brightness changes occur in naturally obtained video frames. We propose a context-based video frame interpolation method via depthwise over-parameterized convolution. First, the proposed network obtains the context graphs of the input frames. Subsequently, an adaptive collaboration of flows is adopted to warp the input frames and the context graphs. Then, the frame synthesis network is used to fuse the warped input frames and context graphs to obtain a preliminary estimate of the interpolated frame. Finally, a post-processing module is employed to refine the result. Experimental results on several datasets demonstrate that the proposed method performs qualitatively and quantitatively better than state-of-the-art methods. (C) 2021 SPIE and IS&T
引用
收藏
页数:17
相关论文
共 50 条
  • [21] VIDEO FRAME INTERPOLATION VIA RESIDUE REFINEMENT
    Li, Haopeng
    Yuan, Yuan
    Wang, Qi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2613 - 2617
  • [22] Video frame interpolation via structure-motion based iterative fusion
    Li, Xi
    Cao, Meng
    Tang, Yingying
    Johnston, Scott
    Hong, Zhendong
    Ma, Huimin
    Shan, Jiulong
    arXiv, 2021,
  • [23] Phase-Based Frame Interpolation for Video
    Meyer, Simone
    Wang, Oliver
    Zimmer, Henning
    Grosse, Max
    Sorkine-Hornung, Alexander
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 1410 - 1418
  • [24] LAP-BASED VIDEO FRAME INTERPOLATION
    Jayashankar, Tejas
    Moulin, Pierre
    Blu, Thierry
    Gilliam, Chris
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 4195 - 4199
  • [25] Context-based complexity reduction of H.264 in video over wireless applications
    Sahafi, L
    Randhawa, TS
    Hardy, RHS
    2004 IEEE 6TH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, 2004, : 23 - 26
  • [26] Progressive Motion Context Refine Network for Efficient Video Frame Interpolation
    Kong, Lingtong
    Liu, Jinfeng
    Yang, Jie
    arXiv, 2022,
  • [27] Context-Based Interpolation of 3-D Medical Images
    Alipour, Sahar
    Wu, Xiaolin
    Shirani, Shahram
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 4112 - 4115
  • [28] Progressive Motion Context Refine Network for Efficient Video Frame Interpolation
    Kong, Lingtong
    Liu, Jinfeng
    Yang, Jie
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2338 - 2342
  • [29] ENHANCING DEFORMABLE CONVOLUTION BASED VIDEO FRAME INTERPOLATION WITH COARSE-TO-FINE 3D CNN
    Danier, Duolikun
    Zhang, Fan
    Bull, David
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1396 - 1400
  • [30] Video Frame Interpolation and Enhancement via Pyramid Recurrent Framework
    Shen, Wang
    Bao, Wenbo
    Zhai, Guangtao
    Chen, Li
    Min, Xiongkuo
    Gao, Zhiyong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 277 - 292