Context-based video frame interpolation via depthwise over-parameterized convolution

被引:0
|
作者
Zhang, Haoran [1 ,2 ]
Yang, Xiaohui [1 ,2 ]
Feng, Zhiquan [1 ,2 ]
机构
[1] Univ Jinan, Shandong Prov Key Lab Network Based Intelligent C, Jinan, Peoples R China
[2] Univ Jinan, Sch Informat Sci & Engn, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
context information; deep learning; depthwise over-parameterized convolution; frame interpolation; frame-rate up-conversion;
D O I
10.1117/1.JEI.30.6.063004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Video frame interpolation is used to generate intermediate frames by estimating the movement of pixels between the input frames. However, problems of blurring, object occlusion, and sudden brightness changes occur in naturally obtained video frames. We propose a context-based video frame interpolation method via depthwise over-parameterized convolution. First, the proposed network obtains the context graphs of the input frames. Subsequently, an adaptive collaboration of flows is adopted to warp the input frames and the context graphs. Then, the frame synthesis network is used to fuse the warped input frames and context graphs to obtain a preliminary estimate of the interpolated frame. Finally, a post-processing module is employed to refine the result. Experimental results on several datasets demonstrate that the proposed method performs qualitatively and quantitatively better than state-of-the-art methods. (C) 2021 SPIE and IS&T
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Video frame interpolation based on depthwise over-parameterized recurrent residual convolution
    Yang, Xiaohui
    Liu, Weijing
    Wang, Shaowen
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (04)
  • [2] Furniture Image Classification Based on Depthwise Group Over-Parameterized Convolution
    Ye, Han
    Zhu, Xiaodong
    Liu, Chengyang
    Yang, Linlin
    Wang, Aili
    ELECTRONICS, 2022, 11 (23)
  • [3] OPS-NET: OVER-PARAMETERIZED SHARING NETWORKS FOR VIDEO FRAME INTERPOLATION
    Wang, Zhen-Fang
    Wang, Yan-Jiang
    Shao, Shuai
    Liu, Bao-Di
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1974 - 1978
  • [4] DO-Conv: Depthwise Over-Parameterized Convolutional Layer
    Cao, Jinming
    Li, Yangyan
    Sun, Mingchao
    Chen, Ying
    Lischinski, Dani
    Cohen-Or, Daniel
    Chen, Baoquan
    Tu, Changhe
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 3726 - 3736
  • [5] Video Frame Interpolation via Adaptive Convolution
    Niklaus, Simon
    Mai, Long
    Liu, Feng
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2270 - 2279
  • [6] Large Displacement Optical Flow Estimation Jointing Depthwise Over-parameterized Convolution and Cross Correlation Attention
    Wang, Zi-Ge
    Ge, Li-Yue
    Chen, Zhen
    Zhang, Cong-Xuan
    Wang, Zi-Xu
    Shu, Ming-Yi
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (08): : 1631 - 1645
  • [7] Siamese network with a depthwise over-parameterized convolutional layer for visual tracking
    Wang, Yuanyun
    Zhang, Wenshuang
    Zhang, Limin
    Wang, Jun
    PLOS ONE, 2022, 17 (08):
  • [8] Spatial Transform Depthwise Over-Parameterized Convolution Recurrent Neural Network for License Plate Recognition in Complex Environment
    Deng, Jiehang
    Wei, Haomin
    Lai, Zhenxiang
    Gu, Guosheng
    Chen, Zhiqiang
    Chen, Leo
    Ding, Lei
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2023, 23 (01)
  • [9] Video Frame Interpolation via Deformable Separable Convolution
    Cheng, Xianhang
    Chen, Zhenzhong
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10607 - 10614
  • [10] Video Frame Interpolation via Generalized Deformable Convolution
    Shi, Zhihao
    Liu, Xiaohong
    Shi, Kangdi
    Dai, Linhui
    Chen, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 426 - 439