Deep Convolutional Neural Network with Deconvolution and a Deep Autoencoder for Fault Detection and Diagnosis

被引:5
|
作者
Kanno, Yasuhiro [1 ]
Kaneko, Hiromasa [1 ]
机构
[1] Meiji Univ, Sch Sci & Technol, Dept Appl Chem, Kawasaki, Kanagawa 2148571, Japan
来源
ACS OMEGA | 2022年 / 7卷 / 02期
基金
日本学术振兴会;
关键词
CHEMICAL-PROCESSES; COMPONENTS;
D O I
10.1021/acsomega.1c06607
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In chemical plants and other industrial facilities, the rapid and accurate detection of the root causes of process faults is essential for the prevention of unknown accidents. This study focused on deep learning while considering the different phenomena that can occur in industrial facilities. A deep convolutional neural network with deconvolution and a deep autoencoder (DDD) is proposed. DDD assesses the process dynamics and the nonlinearity between process variables. During the operation of DDD, fault detection is carried out using the reconstruction error between the data reconstructed through the model and the input data. After a process fault is detected, the magnitude of the contribution of each process variable to the detected process fault is calculated by applying gradient-weighted class activation mapping to the established network. The effectiveness of DDD in fault detection and diagnosis was verified through experiments on the Tennessee Eastman process dataset, demonstrating that it can achieve improved performance compared to the conventional fault detection and diagnosis.
引用
收藏
页码:2458 / 2466
页数:9
相关论文
共 50 条
  • [31] A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis
    Long Wen
    You Wang
    Xinyu Li
    Frontiers of Mechanical Engineering, 2022, 17
  • [32] Transformer fault diagnosis based on improved deep coupled dense convolutional neural network
    Li, Zihao
    He, Yigang
    Xing, Zhikai
    Duan, Jiajun
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 209
  • [33] Fault diagnosis of bearings based on deep separable convolutional neural network and spatial dropout
    Jiqiang ZHANG
    Xiangwei KONG
    Xueyi LI
    Zhiyong HU
    Liu CHENG
    Mingzhu YU
    Chinese Journal of Aeronautics , 2022, (10) : 301 - 312
  • [34] Fault diagnosis of bearings based on deep separable convolutional neural network and spatial dropout
    Zhang, Jiqiang
    Kong, Xiangwei
    LI, Xueyi
    Hu, Zhiyong
    Cheng, Liu
    Yu, Mingzhu
    CHINESE JOURNAL OF AERONAUTICS, 2022, 35 (10) : 301 - 312
  • [35] Fault diagnosis method based on a multi-scale deep convolutional neural network
    Bian J.
    Liu X.
    Xu X.
    Wu G.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2021, 40 (18): : 204 - 211
  • [36] A Robust Fault Diagnosis Method for Rolling Bearings Based on Deep Convolutional Neural Network
    Li, Zhenxiang
    Zheng, Taisheng
    Yang, Wang
    Fu, Hongyong
    Wu, Wenbo
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [37] Bearing Fault Diagnosis Method of Deep Convolutional Neural Network Based on Multiwavelet Decomposition
    Tao T.
    Zhou W.
    Kuang J.
    Xu G.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 5 (31-41): : 31 - 41
  • [38] A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis
    WEN Long
    WANG You
    LI Xinyu
    Frontiers of Mechanical Engineering, 2022, 17 (02)
  • [39] A Novel Method for Bearing Fault Diagnosis Based on a Parallel Deep Convolutional Neural Network
    Lin, Zhuonan
    Wang, Yongxing
    Guo, Yining
    Tong, Xiangrui
    Wei, Fanrong
    Tong, Ning
    SYMMETRY-BASEL, 2024, 16 (04):
  • [40] Bearing Fault Diagnosis with Multi-Channel Sample and Deep Convolutional Neural Network
    Zhang H.
    Yuan Q.
    Zhao B.
    Niu G.
    Yuan, Qi, 1600, Xi'an Jiaotong University (54): : 58 - 66