Deep Convolutional Neural Network with Deconvolution and a Deep Autoencoder for Fault Detection and Diagnosis

被引:5
|
作者
Kanno, Yasuhiro [1 ]
Kaneko, Hiromasa [1 ]
机构
[1] Meiji Univ, Sch Sci & Technol, Dept Appl Chem, Kawasaki, Kanagawa 2148571, Japan
来源
ACS OMEGA | 2022年 / 7卷 / 02期
基金
日本学术振兴会;
关键词
CHEMICAL-PROCESSES; COMPONENTS;
D O I
10.1021/acsomega.1c06607
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In chemical plants and other industrial facilities, the rapid and accurate detection of the root causes of process faults is essential for the prevention of unknown accidents. This study focused on deep learning while considering the different phenomena that can occur in industrial facilities. A deep convolutional neural network with deconvolution and a deep autoencoder (DDD) is proposed. DDD assesses the process dynamics and the nonlinearity between process variables. During the operation of DDD, fault detection is carried out using the reconstruction error between the data reconstructed through the model and the input data. After a process fault is detected, the magnitude of the contribution of each process variable to the detected process fault is calculated by applying gradient-weighted class activation mapping to the established network. The effectiveness of DDD in fault detection and diagnosis was verified through experiments on the Tennessee Eastman process dataset, demonstrating that it can achieve improved performance compared to the conventional fault detection and diagnosis.
引用
下载
收藏
页码:2458 / 2466
页数:9
相关论文
共 50 条
  • [1] Deep Convolutional Neural Network for Image Deconvolution
    Xu, Li
    Ren, Jimmy S. J.
    Liu, Ce
    Jia, Jiaya
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [2] Fault detection and diagnosis with a novel source-aware autoencoder and deep residual neural network
    Amini, Nima
    Zhu, Qinqin
    NEUROCOMPUTING, 2022, 488 : 618 - 633
  • [3] High Impedance Fault Detection by Convolutional Deep Neural Network
    Sirojan, Tharmakulasingam
    Lu, Shibo
    Phung, B. T.
    Zhang, Daming
    Ambikairajah, Eliathamby
    2018 IEEE INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), 2018,
  • [4] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [5] Deep Decoupling Convolutional Neural Network for Intelligent Compound Fault Diagnosis
    Huang, Ruyi
    Liao, Yixiao
    Zhang, Shaohui
    Li, Weihua
    IEEE ACCESS, 2019, 7 : 1848 - 1858
  • [6] Deep Convolutional Neural Network Using Transfer Learning for Fault Diagnosis
    Zhang, Dong
    Zhou, Taotao
    IEEE ACCESS, 2021, 9 : 43889 - 43897
  • [7] Fault Detection of Planetary Gearboxes Based on Deep Convolutional Neural Network
    Cheng, Zhe
    Hu, Niaoqing
    Chen, Jiageng
    Gao, Ming
    Zhu, Qifeng
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [8] Ensemble of feature augmented convolutional neural network and deep autoencoder for efficient detection of network attacks
    Selvakumar B
    Sivaanandh M
    Muneeswaran K
    Lakshmanan B
    Scientific Reports, 15 (1)
  • [9] A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis
    Liu, Guifang
    Bao, Huaiqian
    Han, Baokun
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [10] A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis
    Wu, Zhenghong
    Jiang, Hongkai
    Liu, Shaowei
    Wang, Ruixin
    ISA TRANSACTIONS, 2022, 129 : 505 - 524