Importance sampling via the estimated sampler

被引:16
|
作者
Henmi, Masayuki [1 ]
Yoshida, Ryo [1 ]
Eguchi, Shinto [1 ]
机构
[1] Inst Stat Math, Minato Ku, Tokyo 1068569, Japan
关键词
asymptotic variance zero; Monte Carlo integration; nuisance parameter effect;
D O I
10.1093/biomet/asm076
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monte Carlo importance sampling for evaluating numerical integration is discussed. We consider a parametric family of sampling distributions and propose the use of the sampling distribution estimated by maximum likelihood. The proposed method of importance sampling using the estimated sampling distribution is shown to improve the asymptotic variance of the ordinary method using the true sampling distribution. The argument is closely related to the discussion of the paradox in Henmi & Eguchi (2004). We focus on a condition under which the estimated integration value obtained by the proposed method has asymptotic zero variance.
引用
收藏
页码:985 / 991
页数:7
相关论文
共 50 条
  • [41] Importance sampling via load-balanced facility location
    Archer, Aaron
    Krishnan, Shankar
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 2008, 5035 : 316 - 330
  • [42] Exact tests for the rasch model via sequential importance sampling
    Yuguo Chen
    Dylan Small
    Psychometrika, 2005, 70 : 11 - 30
  • [43] Estimation and approximation of densities of iid sums via importance sampling
    Srinivasan, R
    SIGNAL PROCESSING, 1998, 71 (03) : 235 - 246
  • [44] Elucidating the Auxiliary Particle Filter via Multiple Importance Sampling
    Elvira, Victor
    Martino, Luca
    Bugallo, Monica F.
    Djuric, Petar M.
    IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (06) : 145 - 152
  • [45] Power Grid Reliability Estimation via Adaptive Importance Sampling
    Lukashevich, Aleksander
    Maximov, Yury
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1010 - 1015
  • [46] Transfer of Samples in Policy Search via Multiple Importance Sampling
    Tirinzoni, Andrea
    Salvini, Mattia
    Restelli, Marcello
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [47] An Approximate Optimal Chernoff Fusion Method via Importance Sampling
    Liu, Guanghong
    Li, Ming
    Yi, Wei
    Kong, Lijiang
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2017, : 128 - 133
  • [48] Hierarchical In-Network Attribute Compression via Importance Sampling
    Silva, Arlei
    Bogdanov, Petko
    Singh, Ambuj K.
    2015 IEEE 31ST INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2015, : 951 - 962
  • [49] REIN: Reliability Estimation via Importance sampling with Normalizing flows
    Dasgupta, Agnimitra
    Johnson, Erik A.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 242
  • [50] Estimating LDPC codeword error rates via importance sampling
    Xi, B
    Ryan, WE
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 473 - 473