Importance sampling via the estimated sampler

被引:16
|
作者
Henmi, Masayuki [1 ]
Yoshida, Ryo [1 ]
Eguchi, Shinto [1 ]
机构
[1] Inst Stat Math, Minato Ku, Tokyo 1068569, Japan
关键词
asymptotic variance zero; Monte Carlo integration; nuisance parameter effect;
D O I
10.1093/biomet/asm076
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monte Carlo importance sampling for evaluating numerical integration is discussed. We consider a parametric family of sampling distributions and propose the use of the sampling distribution estimated by maximum likelihood. The proposed method of importance sampling using the estimated sampling distribution is shown to improve the asymptotic variance of the ordinary method using the true sampling distribution. The argument is closely related to the discussion of the paradox in Henmi & Eguchi (2004). We focus on a condition under which the estimated integration value obtained by the proposed method has asymptotic zero variance.
引用
收藏
页码:985 / 991
页数:7
相关论文
共 50 条
  • [1] Gibbs sampler by sampling-importance-resampling
    Koch, K. R.
    JOURNAL OF GEODESY, 2007, 81 (09) : 581 - 591
  • [2] Gibbs sampler by sampling-importance-resampling
    K. R. Koch
    Journal of Geodesy, 2007, 81 : 581 - 591
  • [3] Tracing spinning reserve inadequacy risk via hybrid importance sampling with an optimised partially collapsed Gibbs sampler
    Wang, Yue
    IET Renewable Power Generation, 2022, 15 (11) : 2491 - 2501
  • [4] Tracing spinning reserve inadequacy risk via hybrid importance sampling with an optimised partially collapsed Gibbs sampler
    Wang, Yue
    IET RENEWABLE POWER GENERATION, 2021, 15 (11) : 2491 - 2501
  • [5] Importance sampling in reinforcement learning with an estimated behavior policy
    Hanna, Josiah P.
    Niekum, Scott
    Stone, Peter
    MACHINE LEARNING, 2021, 110 (06) : 1267 - 1317
  • [6] Importance Sampling Policy Evaluation with an Estimated Behavior Policy
    Hanna, Josiah P.
    Niekum, Scott
    Stone, Peter
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [7] Importance sampling in reinforcement learning with an estimated behavior policy
    Josiah P. Hanna
    Scott Niekum
    Peter Stone
    Machine Learning, 2021, 110 : 1267 - 1317
  • [8] IMPORTANCE SAMPLING VIA A SIMULACRUM
    WESSEL, AE
    HALL, EB
    WISE, GL
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1990, 327 (05): : 771 - 783
  • [9] The Gibbs sampler with particle efficient importance sampling for state-space models*
    Grothe, Oliver
    Kleppe, Tore Selland
    Liesenfeld, Roman
    ECONOMETRIC REVIEWS, 2019, 38 (10) : 1152 - 1175
  • [10] Importance Sampling via Local Sensitivity
    Raj, Anant
    Musco, Cameron
    Mackey, Lester
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 3099 - 3108