Hand Gesture Recognition Using 8-Directional Vector Chains in Quantization Space

被引:0
|
作者
Lee, Seongjo [1 ]
Sim, Sohyun [1 ]
Um, Kyhyun [1 ]
Jeong, Young-Sik [1 ]
Cho, Kyungeun [1 ]
机构
[1] Dongguk Univ Seoul, Dept Multimedia Engn, 30 Pildong Ro 1 Gil, Seoul 100715, South Korea
关键词
Hand gesture recognition; Kinect sensor; Hidden Markov model; Multimedia content;
D O I
10.1007/978-94-017-9618-7_31
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a hand gesture recognition technique that allows users to enjoy uninterrupted interaction with a variety of multimedia applications. Hand gestures are recognized using joint information acquired from a Kinect sensor, and the recognized gestures are applied to multimedia content. To this end, hand gestures are quantized in the grid space, expressed using an 8-directional vector chain, and finally recognized on the basis of a hidden Markov model. To assess the proposed approach, we define the hand gestures used in the "Smart Interior" multimedia application, and collect a dataset of gestures using the Kinect. Our experiments demonstrate a high recognition ratio of between 90 and 100 %. Furthermore, the experiments identify the possibility of applying this approach to a variety of multimedia content by verifying its superior operation in actual applications.
引用
收藏
页码:333 / 340
页数:8
相关论文
共 50 条
  • [31] Kendon Model-Based Gesture Recognition Using Hidden Markov Model and Learning Vector Quantization
    De Felice, Domenico
    Camastra, Francesco
    QUANTIFYING AND PROCESSING BIOMEDICAL AND BEHAVIORAL SIGNALS, 2019, 103 : 163 - 171
  • [32] Convolutional Neural Network for Hand Gesture Recognition using 8 different EMG Signals
    Orlando Pinzon-Arenas, Javier
    Jimenez-Moreno, Robinson
    Esteban Herrera-Benavides, Julian
    2019 XXII SYMPOSIUM ON IMAGE, SIGNAL PROCESSING AND ARTIFICIAL VISION (STSIVA), 2019,
  • [33] Static Hand Gesture Recognition Using Novel Convolutional Neural Network and Support Vector Machine
    Veronica, Parsipogu Glory
    Mokkapati, Ravi Kumar
    Jagupilla, Lakshmi Prasanna
    Santhosh, Chella
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (09) : 131 - 141
  • [34] Unsupervised Parameter Selection for Gesture Recognition with Vector Quantization and Hidden Markov Models
    Glomb, Przemyslaw
    Romaszewski, Michal
    Sochan, Arkadiusz
    Opozda, Sebastian
    HUMAN-COMPUTER INTERACTION - INTERACT 2011, PT IV, 2011, 6949 : 170 - 177
  • [35] Local Mean Directional Intensity Pattern: An Efficient Descriptor for Hand Gesture Recognition Using SVM Classification
    Bahuguna, Arti
    Bhaumik, Gopa
    Govil, Mahesh Chandra
    Lecture Notes in Networks and Systems, 2024, 1010 LNNS : 547 - 559
  • [36] Hand Gesture Recognition Using Skeleton of Hand and Distance Based Metric
    Reddy, K. Sivarajesh
    Latha, P. Swarna
    Babu, M. Rajasekhara
    ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, 2011, 198 : 346 - 354
  • [37] Hand Detection and Gesture Recognition Using Symmetric Patterns
    Nemati, Hassan Mashad
    Fan, Yuantao
    Alonso-Fernandez, Fernando
    RECENT DEVELOPMENTS IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, 2016, 642 : 365 - 375
  • [38] CHGR: Captcha generation using Hand Gesture Recognition
    Panwar, Pooja
    Monika
    Kumar, Parveen
    Sharma, Ambalika
    2018 CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (CICT'18), 2018,
  • [39] Accuracy Enhancement of Hand Gesture Recognition Using CNN
    Park, Gyutae
    Chandrasegar, Vasantha Kumar
    Koh, Jinhwan
    IEEE ACCESS, 2023, 11 : 26496 - 26501
  • [40] Robust hand gesture recognition using depth image
    Jiang, Min
    Jiang, Ke
    Kong, Jun
    Li, Pingping
    Sun, Yining
    Journal of Computational Information Systems, 2015, 11 (03): : 1093 - 1100