Group I metabotropic glutamate receptors (mGluRs) form stable, disulfide-linked homodimers. Lack of a verifiably monomeric mGluR1 mutant has led to difficulty in assessing the role of dimerization in the molecular mechanism of mGluR1 activation. The related GABA(B) receptor exhibits striking intradimer cross talk ( ligand binding at one subunit effectively produces G protein activation at the other), but it is unclear whether group I mGluRs exhibit analogous cross talk. Signaling of heterologously expressed mGluR1 was examined in isolated rat sympathetic neurons by measuring glutamate-mediated inhibition of native calcium currents. To examine mGluR1 activity when only one dimer subunit has access to glutamate ligand, wildtype mGluR1 was coexpressed with mGluR1 Y74A, a mutant with impaired glutamate binding, and the activity of the heterodimer (mutant/wild type) was examined. The mGluR1 Y74A mutant alone had a dose-response curve that was shifted by about 2 orders of magnitude. The half-maximal dose of glutamate shifted from 1.3 (wild-type mGluR1) to about 450 (mGluR1 Y74A) muM. However, the maximal effect was similar. Wild-type mGluR1 was expressed with excess Y74A mGluR1 to generate a receptor population consisting largely of mutant homodimers and mutant/wild-type heterodimers but without detectable wild-type homodimers. Under these conditions, no glutamate-mediated calcium current inhibition was observed below similar to 300 muM glutamate, although wild-type mGluR1 protein was detectable with immunofluorescence. These data suggest that mutant/ wild-type heterodimeric receptors are inactive at ligand concentrations favoring glutamate association with receptor dimers at only one subunit.