Graph-Based Spatial-Temporal Convolutional Network for Vehicle Trajectory Prediction in Autonomous Driving

被引:69
|
作者
Sheng, Zihao [1 ,2 ,3 ]
Xu, Yunwen [1 ,2 ,3 ]
Xue, Shibei [1 ,2 ,3 ]
Li, Dewei [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
[3] Shanghai Engn Res Ctr Intelligent Control & Manag, Shanghai 200240, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Trajectory; Predictive models; Autonomous vehicles; Hidden Markov models; Feature extraction; Tensors; Vehicles; Vehicle trajectory prediction; graph convolutional network; spatial-temporal dependency; autonomous driving; MODEL; FUSION; PATH;
D O I
10.1109/TITS.2022.3155749
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Forecasting the trajectories of neighbor vehicles is a crucial step for decision making and motion planning of autonomous vehicles. This paper proposes a graph-based spatial-temporal convolutional network (GSTCN) to predict future trajectory distributions of all neighbor vehicles using past trajectories. This network tackles spatial interactions using a graph convolutional network (GCN), and captures temporal features with a convolutional neural network (CNN). The spatial-temporal features are encoded and decoded by a gated recurrent unit (GRU) network to generate future trajectory distributions. Besides, we propose a weighted adjacency matrix to describe the intensities of mutual influence between vehicles, and the ablation study demonstrates the effectiveness of our scheme. Our network is evaluated on two real-world freeway trajectory datasets: I-80 and US-101 in the Next Generation Simulation (NGSIM). Comparisons in three aspects, including prediction errors, model sizes, and inference speeds, show that our network can achieve state-of-the-art performance.
引用
收藏
页码:17654 / 17665
页数:12
相关论文
共 50 条
  • [21] Auto-STGCN: Autonomous Spatial-Temporal Graph Convolutional Network Search
    Wang, Chunnan
    Zhang, Kaixin
    Wang, Hongzhi
    Chen, Bozhou
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (05)
  • [22] A Dynamic Graph Convolutional Network Based on Spatial-Temporal Modeling
    Li, Jing
    Liu, Yu
    Zou, Lei
    [J]. Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57 (04): : 605 - 613
  • [23] DSTCNN: Deformable spatial-temporal convolutional neural network for pedestrian trajectory prediction
    Chen, Wangxing
    Sang, Haifeng
    Wang, Jinyu
    Zhao, Zishan
    [J]. INFORMATION SCIENCES, 2024, 666
  • [24] InfoSTGCAN: An Information-Maximizing Spatial-Temporal Graph Convolutional Attention Network for Heterogeneous Human Trajectory Prediction
    Ruan, Kangrui
    Di, Xuan
    [J]. COMPUTERS, 2024, 13 (06)
  • [25] GISNet:Graph-Based Information Sharing Network For Vehicle Trajectory Prediction
    Zhao, Ziyi
    Fang, Haowen
    Jin, Zhao
    Qiu, Qinru
    [J]. 2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [26] Trajectory prediction of cyclist based on spatial-temporal multi-graph network in crowded scenarios
    Li, Meng
    Chen, Tao
    Du, Hao
    [J]. ELECTRONICS LETTERS, 2022, 58 (03) : 97 - 99
  • [27] MmSTCT: spatial-temporal convolution transformer network considering driving intention for multimodal vehicle trajectory prediction of highway
    Zhang, Xingrong
    Ge, Hongxia
    Cheng, Rongjun
    [J]. TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2024,
  • [28] Train arrival delay prediction based on spatial-temporal graph convolutional network to sequence model
    Li, Jianmin
    Xu, Xinyue
    Shi, Rui
    Ding, Xin
    [J]. 2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2399 - 2404
  • [29] Global Spatial-Temporal Graph Convolutional Network for Urban Traffic Speed Prediction
    Ge, Liang
    Li, Siyu
    Wang, Yaqian
    Chang, Feng
    Wu, Kunyan
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [30] STS-DGNN: Vehicle Trajectory Prediction via Dynamic Graph Neural Network With Spatial-Temporal Synchronization
    Li, Feng-Jie
    Zhang, Chun-Yang
    Chen, C. L. Philip
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72