Exceptional Points of Degeneracy Induced by Linear Time-Periodic Variation

被引:55
|
作者
Kazemi, Hamidreza [1 ]
Nada, Mohamed Y. [1 ]
Mealy, Tarek [1 ]
Abdelshafy, Ahmed F. [1 ]
Capolino, Filippo [1 ]
机构
[1] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA
来源
PHYSICAL REVIEW APPLIED | 2019年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
PT-SYMMETRIC DIMERS; MICROCAVITIES; AMPLIFICATION;
D O I
10.1103/PhysRevApplied.11.014007
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a general theory of exceptional points of degeneracy (EPD) in periodically time-variant systems. We show that even a single resonator with a time-periodic component is able to develop EPDs, contrary to parity-time-(PT) symmetric systems that require two coupled resonators. An EPD is a special point in a system parameter space at which two or more eigenmodes coalesce in both their eigenvalues and eigenvectors into a single degenerate eigenmode. We demonstrate the conditions for EPDs to exist when they are directly induced by time-periodic variation of a system without loss and gain elements. We also show that a single resonator system with zero time-average loss-gain exhibits EPDs with purely real resonance frequencies, yet the resonator energy grows algebraically in time since energy is injected into the system from the time-variation mechanism. Although the introduced concept and formalism are general for any time-periodic system, here, we focus on the occurrence of EPDs in a single LC resonator with time-periodic modulation. These findings have significant importance in various electromagnetic and photonic systems and pave the way for many applications, such as sensors, amplifiers, and modulators. We show a potential application of this time-varying EPD as a highly sensitive sensor.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] OPTIMAL OUTPUT-FEEDBACK FOR LINEAR TIME-PERIODIC SYSTEMS
    CALISE, AJ
    WASIKOWSKI, ME
    SCHRAGE, DP
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1992, 15 (02) : 416 - 423
  • [42] On time-periodic patterns
    Farkas, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (05) : 669 - 678
  • [43] Unique Charactersitics and Applications of Systems With Exceptional Points of Degeneracy
    Nada, Mohamed Y.
    Othman, Mohamed A. K.
    Yazdi, Farshad
    Oshmarin, Dmitry
    Abdelshafy, Ahmed F.
    Capolino, Filippo
    2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 869 - 870
  • [44] Fredholmness and smooth dependence for linear time-periodic hyperbolic systems
    Kmit, I.
    Recke, L.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) : 1962 - 1986
  • [45] On dynamical and geometric phases of time-periodic linear Euler equations
    Espinoza, RF
    Vorobiev, Y
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2005, 12 (03) : 326 - 349
  • [46] Identification of Piecewise Constant Switching Linear Time-Periodic Systems
    Uyanik, Ismail
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [47] OPTIMAL OUTPUT-FEEDBACK FOR LINEAR TIME-PERIODIC SYSTEMS
    CALISE, AJ
    WASIKOWSKI, ME
    SCHRAGE, DP
    AIAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE, PTS 1 AND 2: A COLLECTION OF TECHNICAL PAPERS, 1989, : 1232 - 1237
  • [48] MONOTONICITY OF THE PRINCIPAL EIGENVALUE FOR A LINEAR TIME-PERIODIC PARABOLIC OPERATOR
    Liu, Shuang
    Lou, Yuan
    Peng, Rui
    Zhou, Maolin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (12) : 5291 - 5302
  • [49] Frequency-domain analysis of linear time-periodic systems
    Sandberg, H
    Möllerstedt, E
    Bernhardsson, B
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 3357 - 3362
  • [50] General Conditions to Realize Exceptional Points of Degeneracy and Applications
    Nada, M. Y.
    Mealy, T.
    Yazdi, F.
    Abdelshafy, A. F.
    Figotin, A.
    Capolino, F.
    2018 12TH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2018, : 287 - 289