Evaluation of LIDAR and Camera External Reference Calibration Methods

被引:0
|
作者
Fu, Yao [1 ]
Luo, Dean [1 ]
Huang, He [1 ]
Xue, Yizhou [1 ]
Yin, Tong [2 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Geomat & Urban Spatial Informat, 15 Yongyuan Rd, Beijing 102616, Peoples R China
[2] Minist Nat Resources, Inst Surveying & Mapping Standardizat, 334 Youyi East Rd, Xian 710054, Shaanxi, Peoples R China
关键词
camera calibration; joint calibration; camera; LIDAR; EXTRINSIC CALIBRATION; 3D LIDAR;
D O I
10.18494/SAM.2021.3561
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In the implementation of autonomous driving, high-precision maps and environment perception are required to support the driving process. They are commonly used to fuse image and point cloud data, but it is necessary to obtain the external parameters of the camera and radar when performing data fusion. However, the external parameters of the camera and radar can cause problems that can be solved by joint calibration. For fast, accurate acquisition of external parameters, a special three-plane calibration plate is designed to fit the spatial equations for each of three different planes passing through the initial point clouds in this study. The calibration plate is used to obtain the coordinates of feature points in the radar coordinate system through the spatial relationships and to extract the pixel coordinates of the feature points from the images to establish the corresponding equations. Finally, the least squares method is used to obtain the calibration parameters. The experimental results show that this method can obtain calibration results faster and more robustly than the traditional checkerboard grid calibration method.
引用
收藏
页码:4489 / 4501
页数:13
相关论文
共 50 条
  • [41] Targetless Camera-LiDAR Calibration in Unstructured Environments
    Angel Munoz-Banon, Miguel
    Candelas, Francisco A.
    Torres, Fernando
    IEEE ACCESS, 2020, 8 : 143692 - 143705
  • [42] Optimising the selection of samples for robust lidar camera calibration
    Tsai, Darren
    Worrall, Stewart
    Shan, Mao
    Lohr, Anton
    Nebot, Eduardo
    IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2021, 2021-September : 2631 - 2638
  • [43] Automatic targetless LiDAR-camera calibration: a survey
    Li, Xingchen
    Xiao, Yuxuan
    Wang, Beibei
    Ren, Haojie
    Zhang, Yanyong
    Ji, Jianmin
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 9949 - 9987
  • [44] LiDAR-Camera Calibration Using Line Correspondences
    Bai, Zixuan
    Jiang, Guang
    Xu, Ailing
    SENSORS, 2020, 20 (21) : 1 - 17
  • [45] Sensitivity analysis in a camera-LiDAR calibration model
    Garcia-Moreno, A. I.
    Gonzalez-Barbosa, J. J.
    Hurtado-Ramos, J. B.
    Ornelas-Rodriguez, F. J.
    Ramirez-Pedraza, A.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2016, 32 (04): : 193 - 203
  • [46] Calibration methods for ITER core LIDAR
    Pasqualotto, R.
    Giudicotti, L.
    Alfier, A.
    Walsh, M. J.
    14TH INTERNATIONAL SYMPOSIUM ON LASER-AIDED PLASMA DIAGNOSTICS (LAPD14), 2010, 227
  • [47] A Novel Calibration Board and Experiments for 3D LiDAR and Camera Calibration
    Cai, Huaiyu
    Pang, Weisong
    Chen, Xiaodong
    Wang, Yi
    Liang, Haolin
    SENSORS, 2020, 20 (04)
  • [48] An Effective Camera-to-Lidar Spatiotemporal Calibration Based on a Simple Calibration Target
    Grammatikopoulos, Lazaros
    Papanagnou, Anastasios
    Venianakis, Antonios
    Kalisperakis, Ilias
    Stentoumis, Christos
    SENSORS, 2022, 22 (15)
  • [49] Extrinsic Calibration Method of Lidar and Camera Based on Key Points of Calibration Board
    Qin Xingsheng
    Li Xiaohuan
    Tang Xin
    Su Zhaoyu
    Liao Zeji
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (04)
  • [50] COMPARISON OF METHODS FOR GEOMETRIC CAMERA CALIBRATION
    Hieronymus, Jan
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION V, 2012, 39-B5 : 595 - 599