Optical solitary waves and conservation laws to the (2+1)-dimensional hyperbolic nonlinear Schrodinger equation

被引:16
|
作者
Aliyu, Aliyu Isa [1 ,2 ]
Inc, Mustafa [1 ]
Yusuf, Abdullahi [1 ,2 ]
Baleanu, Dumitru [3 ,4 ]
机构
[1] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
[2] Fed Univ Dutse, Fac Sci, Dept Math, Jigawa, Nigeria
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] Inst Space Sci, Magurele, Romania
来源
MODERN PHYSICS LETTERS B | 2018年 / 32卷 / 30期
关键词
Hyperbolic nonlinear Schrodinger equation; solitary wave ansatz solution; gray and black optical solitary wave solutions; conservation laws; multipliers approach; ZAKHAROV-KUZNETSOV EQUATION; ION-ACOUSTIC-WAVES; SHRODINGERS EQUATION; GORDON EQUATIONS; SOLITONS; PLASMA; BRIGHT;
D O I
10.1142/S0217984918503736
中图分类号
O59 [应用物理学];
学科分类号
摘要
This work studies the hyperbolic nonlinear Schrodinger equation (H-NLSE) in (2 + 1)-dimensions. The model describes the evolution of the elevation of water wave surface for slowly modulated wave trains in deep water in hydrodynamics, and also governs the propagation of electromagnetic fields in self-focusing and normally dispersive planar wave guides in optics. A class of gray and black optical solitary wave solutions of the H-NLSE are reported by adopting an appropriate solitary wave ansatz solution. Moreover, classification of conservation laws (Cls) to the H-NLSE is implemented using the multipliers approach. Some physical interpretations and analysis of the results obtained are also presented.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Lie symmetries and conservation laws for a generalized (2+1)-dimensional nonlinear evolution equation
    Saez, S.
    de la Rosa, R.
    Recio, E.
    Garrido, T. M.
    Bruzon, M. S.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (04) : 775 - 798
  • [22] Lie symmetries and conservation laws for a generalized (2+1)-dimensional nonlinear evolution equation
    S. Sáez
    R. de la Rosa
    E. Recio
    T. M. Garrido
    M. S. Bruzón
    Journal of Mathematical Chemistry, 2020, 58 : 775 - 798
  • [23] Optical solitons of (2+1)-dimensional nonlinear Schrodinger equation involving linear and nonlinear effects
    Matinfar, M.
    Hosseini, K.
    OPTIK, 2021, 228
  • [24] Solutions and Conservation Laws of a (2+1)-Dimensional Boussinesq Equation
    Moleleki, Letlhogonolo Daddy
    Khalique, Chaudry Masood
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [25] Rogue waves in the (2+1)-dimensional nonlinear Schrodinger equations
    Liu, Changfu
    Wang, Zeping
    Dai, Zhengde
    Chen, Longwei
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2015, 25 (03) : 656 - 664
  • [26] Optical solitons and periodic solutions of the (2+1)-dimensional nonlinear Schrodinger's equation
    Feng, Dahe
    Jiao, Jianjun
    Jiang, Guirong
    PHYSICS LETTERS A, 2018, 382 (32) : 2081 - 2084
  • [27] Cnoidal and Snoidal Waves Solutions and Conservation Laws of a Generalized (2+1)-Dimensional KdV Equation
    Motsepa, Tanki
    Khalique, Chaudry Masood
    MATHEMATICAL PHYSICS, 2018, : 253 - 263
  • [28] On the Whitham system for the (2+1)-dimensional nonlinear Schrodinger equation
    Ablowitz, Mark J.
    Cole, Justin T.
    Rumanov, Igor
    STUDIES IN APPLIED MATHEMATICS, 2023, 150 (02) : 380 - 419
  • [29] Nonpropagating Solitary Waves in (2+1)-Dimensional Nonlinear Systems
    MENG Jian-Ping
    ZHANG Jie-Fang Institute of Nonlinear Physics
    CommunicationsinTheoreticalPhysics, 2005, 43 (05) : 831 - 836
  • [30] Nonpropagating solitary waves in (2+1)-dimensional nonlinear systems
    Meng, JP
    Zhang, JF
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (05) : 831 - 836