Classification of the reducible Verma modules over the Jacobi algebra G2

被引:1
|
作者
Aizawa, N. [1 ]
Dobrev, V. K. [2 ]
Doi, S. [1 ]
机构
[1] Osaka Prefecture Univ, Dept Phys Sci, Nakamozu Campus, Sakai, Osaka 5998531, Japan
[2] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, 72 Tsarigradsko Chaussee, Sofia 1784, Bulgaria
关键词
Jacobi algebra; representations; reducible Verma modules;
D O I
10.1088/1751-8121/ac2a05
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper we study the representations of the Jacobi algebra. More concretely, we define, analogously to the case of semi-simple Lie algebras, the Verma modules over the Jacobi algebra G(2). We study their reducibility and give explicit construction of the reducible Verma modules exhibiting the corresponding singular vectors. Using this information we give a complete classification of the reducible Verma modules. More than this we exhibit their interrelation of embeddings between these modules. These embeddings are illustrated by diagrams of the embedding patterns so that each reducible Verma module appears in one such diagram.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] Multiplet Classification of Reducible Verma Modules over the G2 Algebra
    Dobrev, V. K.
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
  • [2] On Reducible Verma Modules over Jacobi Algebra1
    Dobrev, V.K.
    arXiv, 2019,
  • [3] Generalized Verma modules over the Lie algebra of type G2
    Khomenko, A
    Mazorchuk, V
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (02) : 777 - 783
  • [4] VERMA MODULES OVER THE VIRASORO ALGEBRA
    FEIGIN, BL
    FUKS, DB
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1983, 17 (03) : 241 - 242
  • [5] VERMA MODULES OVER THE VIRASORO ALGEBRA
    FEIGIN, BL
    FUCHS, DB
    LECTURE NOTES IN MATHEMATICS, 1984, 1060 : 230 - 245
  • [6] The structure of verma modules over the N=2 superconformal algebra
    Semikhatov, AM
    Tipunin, IY
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (01) : 129 - 173
  • [7] Verma modules over a block lie algebra
    Jiang, Qifen
    Wu, Yuezhu
    ALGEBRA COLLOQUIUM, 2008, 15 (02) : 235 - 240
  • [8] Invariant differential operators for the Jacobi algebra G2
    Aizawa, N.
    Dobrev, V. K.
    MODERN PHYSICS LETTERS A, 2022, 37 (11)
  • [9] The Structure of Verma Modules over the N \equals; 2 Superconformal Algebra
    A. M. Semikhatov
    I. Y. Tipunin
    Communications in Mathematical Physics, 1998, 195 : 129 - 173
  • [10] Verma modules over the generalized Heisenberg-Virasoro algebra
    Shen, Ran
    Jiang, Qifen
    Su, Yucai
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (04) : 1464 - 1473