Multiplet Classification of Reducible Verma Modules over the G2 Algebra

被引:1
|
作者
Dobrev, V. K. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, 72 Tsarigradsko Chaussee, Sofia 1784, Bulgaria
关键词
LIE-GROUPS; REPRESENTATIONS;
D O I
10.1088/1742-6596/1194/1/012027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper we continue the project of systematic construction of invariant differential operators on the example of the non-compact algebra G(2(2)) which is split real form of G(2). We give the classification of reducible Verma modules G(2). We give also the singular vectors between these modules, thus setting the stage for construction of the invariant differential operators over G(2(2)).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Classification of the reducible Verma modules over the Jacobi algebra G2
    Aizawa, N.
    Dobrev, V. K.
    Doi, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (47)
  • [2] Generalized Verma modules over the Lie algebra of type G2
    Khomenko, A
    Mazorchuk, V
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (02) : 777 - 783
  • [3] On Reducible Verma Modules over Jacobi Algebra1
    Dobrev, V.K.
    arXiv, 2019,
  • [4] VERMA MODULES OVER THE VIRASORO ALGEBRA
    FEIGIN, BL
    FUKS, DB
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1983, 17 (03) : 241 - 242
  • [5] VERMA MODULES OVER THE VIRASORO ALGEBRA
    FEIGIN, BL
    FUCHS, DB
    LECTURE NOTES IN MATHEMATICS, 1984, 1060 : 230 - 245
  • [6] The structure of verma modules over the N=2 superconformal algebra
    Semikhatov, AM
    Tipunin, IY
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 195 (01) : 129 - 173
  • [7] Verma modules over a block lie algebra
    Jiang, Qifen
    Wu, Yuezhu
    ALGEBRA COLLOQUIUM, 2008, 15 (02) : 235 - 240
  • [8] The Structure of Verma Modules over the N \equals; 2 Superconformal Algebra
    A. M. Semikhatov
    I. Y. Tipunin
    Communications in Mathematical Physics, 1998, 195 : 129 - 173
  • [9] Verma modules over the generalized Heisenberg-Virasoro algebra
    Shen, Ran
    Jiang, Qifen
    Su, Yucai
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (04) : 1464 - 1473
  • [10] On the structure of Verma modules over the W-algebra W(2,2)
    Jiang, Wei
    Pei, Yufeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)