Size Stability and H2/CO Selectivity for Au Nanoparticles during Electrocatalytic CO2 Reduction

被引:112
|
作者
Trindell, Jamie A. [1 ]
Clausmeyer, Jan [1 ]
Crooks, Richard M. [1 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Dept Chem, 105 East 24th St,Stop A5300, Austin, TX 78712 USA
关键词
ENCAPSULATED PD NANOPARTICLES; METAL NANOPARTICLES; GOLD NANOPARTICLES; CARBON-DIOXIDE; DENDRIMER; ELECTROREDUCTION; HYDROGENATION; ENHANCEMENT; NITROPHENOL; REACTIVITY;
D O I
10.1021/jacs.7b06775
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we show that Au nanoparticles (AuNPs) stabilized with either citrate or by low-generation dendrimers rapidly grow during electrocatalytic reduction of CO2. For example, citrate-stabilized AuNPs and AuNPs encapsulated within sixth-generation, hydroxyl terminated, poly(amidoamine) dendrimers (G6-OH DENs) having diameters of similar to 2 nm grow substantially in size (to 6-7 nm) and polydispersity during just 15 min of electrolysis at -0.80 V (vs RHE). This degree of instability makes it impossible to correlate the structure of AuNPs determined prior to electrocatalysis to their catalytic function. In contrast to the G6-OH dendrimer, the higher generation G8-OH analogue stabilizes AuNPs under the same conditions that lead to instability of the other two materials. More specifically, G8-OH DENs having an initial size of 1.7 +/- 0.3 nm increase to only 2.2 +/- 0.5 nm during electrolysis in 0.10 M NaHCO3 at -0.80 V (vs RHE). Even when the electrolysis is carried out at -1.20 V, the higher-generation dendrimer stabilizes encapsulated AuNPs. This is presumably due to the compactness of the periphery of the G8-OH dendrimer. Although the G8-OH dendrimer nearly eliminates AuNP growth, the surface of the AuNP is still accessible for electrocatalytic reactions. The smaller, more stable G8-OH DENs strongly favor formation of H-2 over CO. Some previous reports have suggested that AuNPs in the similar to 2 nm size range yield primarily CO, but we believe these findings are a consequence of the growth of the AuNPs during catalysis and do not reflect the true function of similar to 2 nm AuNPs.
引用
收藏
页码:16161 / 16167
页数:7
相关论文
共 50 条
  • [21] Electrocatalytic reduction of CO2 in water to CO+H2 syngas mixtures
    Kang, Peng
    Chen, Zuofeng
    Nayak, Animesh
    Meyer, Thomas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [22] Ligand-Free Silver Nanoparticles for CO2 Electrocatalytic Reduction to CO
    Mattarozzi, Francesco
    Visser, Nienke
    de Rijk, Jan Willem
    Ngene, Peter
    de Jongh, Petra
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2022, 2022 (29)
  • [24] SYNTHESIS OF POLYCRYSTALLINE DIAMOND FILMS IN CO2/H2 AND CO/CO2/H2 SYSTEMS
    MURANAKA, Y
    YAMASHITA, H
    MIYADERA, H
    BREUILLY, L
    JOURNAL OF CRYSTAL GROWTH, 1991, 112 (04) : 808 - 818
  • [25] Hydrogen transfer pathway controls selectivity in electrocatalytic CO2 reduction
    Wan, Chengzhang
    Ager, Joel W.
    Huang, Yu
    NATURE CHEMISTRY, 2025, 17 (03) : 307 - 308
  • [26] Selectivity control towards CO versus H2 for photo-driven CO2 reduction with a novel Co(II) catalyst
    Gracia, Lisa-Lou
    Henkel, Philip
    Fuhr, Olaf
    Bizzarri, Claudia
    BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2023, 19 : 1766 - 1775
  • [27] A review on plasmonic enhancement of activity and selectivity in electrocatalytic CO2 reduction
    Xue, Jing
    Chen, Zhenlin
    Zhang, Yuchao
    Zhao, Jincai
    FRONTIERS IN ENERGY, 2024, 18 (04) : 399 - 417
  • [28] Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction
    Zhang, Xiaolong
    Li, Fengwang
    Zhang, Ying
    Bond, Alan M.
    Zhang, Jie
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) : 7851 - 7858
  • [29] Electrocatalytic reduction of CO2 to useful chemicals on copper nanoparticles
    Dongare, Saudagar
    Singh, Neetu
    Bhunia, Haripada
    APPLIED SURFACE SCIENCE, 2021, 537
  • [30] Pd-SnO2 interface enables synthesis of syngas with controllable H2/CO ratios by electrocatalytic reduction of CO2
    He, Haichuan
    Xia, Dan
    Yu, Xiao
    Wu, Jian
    Wang, Yan
    Wang, Liqiang
    Wu, Linlin
    Huang, Jianhan
    Zhao, Ning
    Deng, Liu
    Liu, You-Nian
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 312