Size Stability and H2/CO Selectivity for Au Nanoparticles during Electrocatalytic CO2 Reduction

被引:112
|
作者
Trindell, Jamie A. [1 ]
Clausmeyer, Jan [1 ]
Crooks, Richard M. [1 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Dept Chem, 105 East 24th St,Stop A5300, Austin, TX 78712 USA
关键词
ENCAPSULATED PD NANOPARTICLES; METAL NANOPARTICLES; GOLD NANOPARTICLES; CARBON-DIOXIDE; DENDRIMER; ELECTROREDUCTION; HYDROGENATION; ENHANCEMENT; NITROPHENOL; REACTIVITY;
D O I
10.1021/jacs.7b06775
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we show that Au nanoparticles (AuNPs) stabilized with either citrate or by low-generation dendrimers rapidly grow during electrocatalytic reduction of CO2. For example, citrate-stabilized AuNPs and AuNPs encapsulated within sixth-generation, hydroxyl terminated, poly(amidoamine) dendrimers (G6-OH DENs) having diameters of similar to 2 nm grow substantially in size (to 6-7 nm) and polydispersity during just 15 min of electrolysis at -0.80 V (vs RHE). This degree of instability makes it impossible to correlate the structure of AuNPs determined prior to electrocatalysis to their catalytic function. In contrast to the G6-OH dendrimer, the higher generation G8-OH analogue stabilizes AuNPs under the same conditions that lead to instability of the other two materials. More specifically, G8-OH DENs having an initial size of 1.7 +/- 0.3 nm increase to only 2.2 +/- 0.5 nm during electrolysis in 0.10 M NaHCO3 at -0.80 V (vs RHE). Even when the electrolysis is carried out at -1.20 V, the higher-generation dendrimer stabilizes encapsulated AuNPs. This is presumably due to the compactness of the periphery of the G8-OH dendrimer. Although the G8-OH dendrimer nearly eliminates AuNP growth, the surface of the AuNP is still accessible for electrocatalytic reactions. The smaller, more stable G8-OH DENs strongly favor formation of H-2 over CO. Some previous reports have suggested that AuNPs in the similar to 2 nm size range yield primarily CO, but we believe these findings are a consequence of the growth of the AuNPs during catalysis and do not reflect the true function of similar to 2 nm AuNPs.
引用
收藏
页码:16161 / 16167
页数:7
相关论文
共 50 条
  • [1] Electrocatalytic reduction of CO2 to CO by monodisperse Au nanoparticles
    Zhu, Wenlei
    Metin, Onder
    Wright, Chritopher
    Sun, Shouheng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [2] Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO
    Zhu, Wenlei
    Michalsky, Ronald
    Metin, Oender
    Lv, Haifeng
    Guo, Shaojun
    Wright, Christopher J.
    Sun, Xiaolian
    Peterson, Andrew A.
    Sun, Shouheng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (45) : 16833 - 16836
  • [3] Electrochemical CO2 Reduction on Bimetallic Surface Alloys: Enhanced Selectivity to CO for Co/Au(110) and to H2 for Sn/Au(110)
    Todoroki, Naoto
    Tei, Hiroki
    Miyakawa, Taku
    Tsurumaki, Hiroto
    Wadayama, Toshimasa
    CHEMELECTROCHEM, 2019, 6 (12) : 3101 - 3107
  • [4] On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO2
    Velasco-Velez, Juan-Jesus
    Chuang, Cheng-Hao
    Gao, Dunfeng
    Zhu, Qingjun
    Ivanov, Danail
    Jeon, Hyo Sang
    Arrigo, Rosa
    Mom, Rik Valentijn
    Stotz, Eugen
    Wu, Heng-Liang
    Jones, Travis E.
    Roldan Cuenya, Beatriz
    Knop-Gericke, Axel
    Schloegl, Robert
    ACS CATALYSIS, 2020, 10 (19) : 11510 - 11518
  • [5] Enhanced CO selectivity and stability for electrocatalytic reduction of CO2 on electrodeposited nanostructured porous Ag electrode
    Wang, Hua
    Han, Zhenzhen
    Zhang, Libo
    Cui, Chaonan
    Zhu, Xinli
    Liu, Xiao
    Han, Jinyu
    Ge, Qingfeng
    JOURNAL OF CO2 UTILIZATION, 2016, 15 : 41 - 49
  • [6] Selective Electrocatalytic Reduction of CO2 into CO at Small, Thiol-Capped Au/Cu Nanoparticles
    Kauffman, Douglas R.
    Alfonso, Dominic R.
    Tafen, De Nyago
    Wang, Congjun
    Zhou, Yunyun
    Yu, Yang
    Lekse, Jonathan W.
    Deng, Xingyi
    Espinoza, Vanessa
    Trindell, Jamie
    Ranasingha, Oshadha K.
    Roy, Amitava
    Lee, Jun-Sik
    Xin, Huolin L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (49): : 27991 - 28000
  • [7] Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles
    Gao, Dunfeng
    Zhou, Hu
    Wang, Jing
    Miao, Shu
    Yang, Fan
    Wang, Guoxiong
    Wang, Jianguo
    Bao, Xinhe
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (13) : 4288 - 4291
  • [8] Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction
    Rosen, Jonathan
    Hutchings, Gregory S.
    Lu, Qi
    Forest, Robert V.
    Moore, Alex
    Jiao, Feng
    ACS CATALYSIS, 2015, 5 (08): : 4586 - 4591
  • [9] Nonmetallic catalysts with high activity and selectivity for the electrocatalytic reduction of CO2 to CO
    Ma, Yingfei
    Sun, Guodong
    Shi, Jiangyi
    Chen, Yao
    Cai, Peirong
    Li, Deqing
    Sun, Mengchen
    Cao, Yanan
    Zhang, Yan
    Cai, Jiahong
    Zhao, Kaiyang
    Lei, Qihuan
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2025, 33 (04) : 327 - 333
  • [10] Electrocatalytic behaviors of metal nanoparticles for CO2 reduction
    Lee, Yongjin
    Im, SangHyeok
    Lee, Dongil
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251