A family of quasi-solvable quantum many-body systems

被引:3
|
作者
Tanaka, T [1 ]
机构
[1] Kyoto Univ, Fac Integrated Human Studies, Kyoto 6068501, Japan
关键词
quantum many-body problem; quasi-solvability; supersymmetry; Inozemtsev models; Calogero-Sutherland models;
D O I
10.1016/S0370-2693(03)00866-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct a family of quasi-solvable quantum many-body systems by an algebraic method. The models contain up to two-body interactions and have permutation symmetry. We classify these models under the consideration of invariance property. It turns out that this family includes the rational, hyperbolic (trigonometric) and elliptic Inozemtsev models as particular cases. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:100 / 106
页数:7
相关论文
共 50 条
  • [41] Irreversible dynamics in quantum many-body systems
    Schmitt, Markus
    Kehrein, Stefan
    PHYSICAL REVIEW B, 2018, 98 (18)
  • [42] Quantum effects in many-body gravitating systems
    Golovko, VA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (29): : 6431 - 6446
  • [43] Effective Lagrangians for quantum many-body systems
    Jens O. Andersen
    Tomáš Brauner
    Christoph P. Hofmann
    Aleksi Vuorinen
    Journal of High Energy Physics, 2014
  • [44] THE ERGODIC BEHAVIOUR OF QUANTUM MANY-BODY SYSTEMS
    VANHOVE, L
    PHYSICA, 1959, 25 (04): : 268 - 276
  • [45] Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems
    Gherardini, Stefano
    De Chiara, Gabriele
    PRX QUANTUM, 2024, 5 (03):
  • [46] Emergence of Objectivity for Quantum Many-Body Systems
    Ollivier, Harold
    ENTROPY, 2022, 24 (02)
  • [47] Quantum Many-Body Systems in Thermal Equilibrium
    Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, Garching
    D-85748, Germany
    不详
    28049, Spain
    PRX. Quantum., 4
  • [48] Measure synchronization in quantum many-body systems
    Qiu, Haibo
    Julia-Diaz, Bruno
    Angel Garcia-March, Miguel
    Polls, Artur
    PHYSICAL REVIEW A, 2014, 90 (03)
  • [49] Effective Lagrangians for quantum many-body systems
    Andersen, Jens O.
    Brauner, Tomas
    Hofmann, Christoph P.
    Vuorinen, Aleksi
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [50] Gappability Index for Quantum Many-Body Systems
    Yao, Yuan
    Oshikawa, Masaki
    Furusaki, Akira
    PHYSICAL REVIEW LETTERS, 2022, 129 (01)