Measurement-based quantum computation with the toric code states

被引:51
|
作者
Bravyi, Sergey [1 ]
Raussendorf, Robert
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Perimeter Inst, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 02期
关键词
D O I
10.1103/PhysRevA.76.022304
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study measurement-based quantum computation (MQC) using as a quantum resource the planar code state on a two-dimensional square lattice (planar analog of the toric code). It is shown that MQC with the planar code state can be efficiently simulated on a classical computer if at each step of MQC the sets of measured and unmeasured qubits correspond to connected subsets of the lattice. The simulation scheme is built upon Barahona's algorithm for computing the partition function of the Ising model on a planar graph. Our results provide a simulation method for MQC centered around planarity of graphs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Novel schemes for measurement-based quantum computation
    Gross, D.
    Eisert, J.
    PHYSICAL REVIEW LETTERS, 2007, 98 (22)
  • [22] Measurement-Based Quantum Computation with Trapped Ions
    Lanyon, B. P.
    Jurcevic, P.
    Zwerger, M.
    Hempel, C.
    Martinez, E. A.
    Duer, W.
    Briegel, H. J.
    Blatt, R.
    Roos, C. F.
    PHYSICAL REVIEW LETTERS, 2013, 111 (21)
  • [23] Reversibility in Extended Measurement-Based Quantum Computation
    Hamrit, Nidhal
    Perdrix, Simon
    REVERSIBLE COMPUTATION, RC 2015, 2015, 9138 : 129 - 138
  • [24] Blind topological measurement-based quantum computation
    Morimae, Tomoyuki
    Fujii, Keisuke
    NATURE COMMUNICATIONS, 2012, 3
  • [25] Hierarchies of resources for measurement-based quantum computation
    Frembs, Markus
    Roberts, Sam
    Campbell, Earl T.
    Bartlett, Stephen D.
    NEW JOURNAL OF PHYSICS, 2023, 25 (01):
  • [26] The Gauge Theory of Measurement-Based Quantum Computation
    Wong, Gabriel
    Raussendorf, Robert
    Czech, Bartlomiej
    QUANTUM, 2024, 8
  • [27] Optimization of networks for measurement-based quantum computation
    Ferrini, G.
    Roslund, J.
    Arzani, F.
    Cai, Y.
    Fabre, C.
    Treps, N.
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [28] Research progress of measurement-based quantum computation
    Zhang Shi-Hao
    Zhang Xiang-Dong
    Li Lu-Zhou
    ACTA PHYSICA SINICA, 2021, 70 (21)
  • [29] Measurement-Based and Universal Blind Quantum Computation
    Broadbent, Anne
    Fitzsimons, Joseph
    Kashefi, Elham
    FORMAL METHODS FOR QUANTITATIVE ASPECTS OF PROGRAMMING LANGUAGES, 2010, 6154 : 43 - +
  • [30] Blind topological measurement-based quantum computation
    Tomoyuki Morimae
    Keisuke Fujii
    Nature Communications, 3