A Performance Comparison of Euclidean, Manhattan and Minkowski Distances in K-Means Clustering

被引:0
|
作者
Haviluddin [1 ]
Iqbal, Muhammad [1 ]
Putra, Gubtha Mahendra [1 ]
Puspitasari, Novianti [1 ]
Setyadi, Hario Jati [1 ]
Dwiyanto, Felix Andika [2 ]
Wibawa, Aji Prasetya [3 ]
Alfred, Rayner [4 ]
机构
[1] Univ Mulawarman, Dept Informat, Samarinda, Indonesia
[2] Univ Negeri Malang, Grad Sch, Malang, Indonesia
[3] Univ Negeri Malang, Dept Elect Engn, Malang, Indonesia
[4] Univ Malaysia Sabah, Fac Comp & Informat, Kota Kinabalu, Sabah, Malaysia
关键词
crime; clustering; K-Means; Euclidian distance; Manhattan distance; Minkowski distance; SSE;
D O I
10.1109/ICSITech49800.2020.9392053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Indonesian police department has a role in maintaining security and law enforcement under the Republic of Indonesia Law Number 2 of 2002. In this study, data on the crime rate in the Bontang City area has been analyzed. It becomes the basis for the Police in anticipating various crimes. The K-Means algorithm is used for data analysis. Based on the test results, there are three levels of crime: high, medium, and low. According to the analysis, the high crime rate in the Bontang City area is special case theft and vehicle theft. Furthermore, it becomes the police program to maintain personal and vehicle safety.
引用
收藏
页码:184 / 188
页数:5
相关论文
共 50 条
  • [21] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    ALGORITHMS, 2018, 11 (10):
  • [22] Performance evaluation of K-means clustering on Hadoop infrastructure
    Vats, Satvik
    Sagar, B. B.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (08): : 1349 - 1363
  • [23] Selection of K in K-means clustering
    Pham, DT
    Dimov, SS
    Nguyen, CD
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2005, 219 (01) : 103 - 119
  • [24] Improving Clustering Method Performance Using K-Means, Mini Batch K-Means, BIRCH and Spectral
    Wahyuningrum, Tenia
    Khomsah, Siti
    Suyanto, Suyanto
    Meliana, Selly
    Yunanto, Prasti Eko
    Al Maki, Wikky F.
    2021 4TH INTERNATIONAL SEMINAR ON RESEARCH OF INFORMATION TECHNOLOGY AND INTELLIGENT SYSTEMS (ISRITI 2021), 2020,
  • [25] Comparison between K-Means and K-Medoids Clustering Algorithms
    Madhulatha, Tagaram Soni
    ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, 2011, 198 : 472 - 481
  • [26] Geodesic K-means Clustering
    Asgharbeygi, Nima
    Maleki, Arian
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3450 - 3453
  • [27] Stability of k-means clustering
    Ben-David, Shai
    Pal, Ddvid
    Simon, Hans Ulrich
    LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 20 - +
  • [28] On the Optimality of k-means Clustering
    Dalton, Lori A.
    2013 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2013), 2013, : 70 - 71
  • [29] Transformed K-means Clustering
    Goel, Anurag
    Majumdar, Angshul
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1526 - 1530
  • [30] On autonomous k-means clustering
    Elomaa, T
    Koivistoinen, H
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, 3488 : 228 - 236