Constructions of Quadratic and Cubic Rotation Symmetric Bent Functions

被引:42
|
作者
Gao, Guangpu [1 ]
Zhang, Xiyong [1 ]
Liu, Wenfen [1 ]
Carlet, Claude [2 ,3 ,4 ]
机构
[1] Zhengzhou Informat Sci & Technol Inst, Dept Appl Math, Zhengzhou 450002, Peoples R China
[2] Univ Paris 08, LAGA, F-93526 St Denis, France
[3] Univ Paris 13, LAGA, F-93526 St Denis, France
[4] CNRS, F-93526 St Denis, France
关键词
Bent function; cubic function; Maiorana-McFarland class of bent function; quadratic function; rotation symmetric (RotS) Boolean function; BOOLEAN FUNCTIONS;
D O I
10.1109/TIT.2012.2193377
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider constructions of rotation symmetric bent functions, which are of the forms: f(c)(x) = Sigma(m-1)(i=1) c(i)(Sigma(n-1)(j=0) x(j)x(i+j)) + c(m) (Sigma(m-1)(j=0) x(j)x(m+j)) and, f(t)(x) = Sigma(n-1)(i=0) (x(i)x(t)+(i)x(m+i) + x(i)x(t+i)) + Sigma(m-1)(i=0) x(i)x(m+i) where, n = 2m, c(i) is an element of {0, 1} (the subscript u of x(u) in the previous expressions is taken as u modulo n). For each case, a necessary and sufficient condition is obtained. To the best of our knowledge, this class of cubic rotation symmetric bent functions is the first example of an infinite class of nonquadratic rotation symmetric bent functions.
引用
收藏
页码:4908 / 4913
页数:6
相关论文
共 50 条
  • [31] Affine equivalence for quadratic rotation symmetric Boolean functions
    Chirvasitu, Alexandru
    Cusick, Thomas W.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (07) : 1301 - 1329
  • [32] Weights of Boolean cubic monomial rotation symmetric functions
    Maxwell L. Bileschi
    Thomas W. Cusick
    Daniel Padgett
    [J]. Cryptography and Communications, 2012, 4 : 105 - 130
  • [33] Weights of Boolean cubic monomial rotation symmetric functions
    Bileschi, Maxwell L.
    Cusick, Thomas W.
    Padgett, Daniel
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2012, 4 (02): : 105 - 130
  • [34] Permutation equivalence of cubic rotation symmetric Boolean functions
    Cusick, Thomas W.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (08) : 1568 - 1573
  • [35] Affine equivalence of cubic homogeneous rotation symmetric functions
    Cusick, Thomas W.
    [J]. INFORMATION SCIENCES, 2011, 181 (22) : 5067 - 5083
  • [36] Cubic bent functions
    Hou, XD
    [J]. DISCRETE MATHEMATICS, 1998, 189 (1-3) : 149 - 161
  • [37] On constructions of semi-bent functions from bent functions
    Cohen, Gerard
    Mesnager, Sihem
    [J]. DISCRETE GEOMETRY AND ALGEBRAIC COMBINATORICS, 2014, 625 : 141 - 154
  • [38] Two infinite classes of rotation symmetric bent functions with simple representation
    Tang, Chunming
    Qi, Yanfeng
    Zhou, Zhengchun
    Fan, Cuiling
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2018, 29 (03) : 197 - 208
  • [39] Two infinite classes of rotation symmetric bent functions with simple representation
    Chunming Tang
    Yanfeng Qi
    Zhengchun Zhou
    Cuiling Fan
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2018, 29 : 197 - 208
  • [40] Results on the nonexistence of bent-negabent rotation symmetric Boolean functions
    Lei Sun
    Zexia Shi
    Jian Liu
    Fang-Wei Fu
    [J]. Cryptography and Communications, 2022, 14 : 999 - 1008