Rainbow vertex connection number of dense and sparse graphs

被引:0
|
作者
Liu, Mengmeng [1 ]
机构
[1] Lanzhou Jiaotong Univ, Dept Math, Lanzhou 730070, Peoples R China
关键词
vertex-colored graph; rainbow vertex coloring; rainbow vertex connection number;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A vertex-colored graph G is rainbow connected, if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex connection number of a connected graph G, denoted rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex connected. In this paper, we show that rvc(G) <= k, if vertical bar E(G)vertical bar >= ((n-k)(2)) + k, for k = 2,3,n - 4,n - 5,n - 6. These bounds are sharp.
引用
收藏
页码:393 / 399
页数:7
相关论文
共 50 条
  • [41] On the study of rainbow antimagic connection number of corona product of graphs
    Septory, Brian Juned
    Susilowati, Liliek
    Dafik
    Lokesha, Veerabhadraiah
    Nagamani, Gnaneswaran
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (01): : 271 - 285
  • [42] The size of graphs with restricted rainbow 2-connection number
    Fujita, Shinya
    Liu, Henry
    Park, Boram
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 183 - 200
  • [43] On the (Strong) Rainbow Vertex Connection of Graphs Resulting from Edge Comb Product
    Dafik
    Slamin
    Muharromah, Agustina
    1ST INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2018, 1008
  • [44] VERTEX RAINBOW COLORINGS OF GRAPHS
    Fujie-Okamoto, Futaba
    Kolasinski, Kyle
    Lin, Jianwei
    Zhang, Ping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 63 - 80
  • [45] RAINBOW CONNECTION IN GRAPHS
    Chartrand, Gary
    Johns, Garry L.
    McKeon, Kathleen A.
    Zhang, Ping
    MATHEMATICA BOHEMICA, 2008, 133 (01): : 85 - 98
  • [46] Rainbow vertex-connection number on a small-world Farey graph
    Darayon, Chayapa
    Tangjai, Wipawee
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (01) : 54 - 60
  • [47] Some upper bounds for the total-rainbow connection number of graphs
    Liu, Sujuan
    Zhao, Yan
    Wang, Linlin
    ARS COMBINATORIA, 2020, 150 : 159 - 169
  • [48] Nordhaus–Gaddum-Type Theorem for Rainbow Connection Number of Graphs
    Lily Chen
    Xueliang Li
    Huishu Lian
    Graphs and Combinatorics, 2013, 29 : 1235 - 1247
  • [49] Characterization of graphs with rainbow connection number m - 2 and m - 3
    Li, Xueliang
    Sun, Yuefang
    Zhao, Yan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2014, 60 : 306 - 313
  • [50] On the Locating Rainbow Connection Number of the Comb Product with Complete Graphs or Trees
    Imrona, Mahmud
    Salman, A. N. M.
    Uttunggadewa, Saladin
    Putri, Pritta Etriana
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 203 - 214