Doubly periodic vortices for a Chern-Simons model

被引:2
|
作者
Guo, Boling [1 ]
Li, Fangfang [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou 466000, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Simons model; BPS equations; Constrained minimization; Doubly periodic domain; MULTIVORTEX SOLUTIONS; CHARGED VORTICES; VORTEX; PARTICLES; FIELDS;
D O I
10.1016/j.jmaa.2017.08.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish the existence of vortex solutions for a relativistic self dual U(1) x U(1) Chern-Simons system over a doubly periodic domain. We use a constrained minimization approach to obtain the existence result, the system admits a solution when the Chern-Simons coupling parameter k > 0 is sufficiently small; while no solution exists when k > 0 is not sufficiently small. And we also get the quantized integral. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:889 / 909
页数:21
相关论文
共 50 条
  • [21] MORE ON SCATTERING OF CHERN-SIMONS VORTICES
    DZIARMAGA, J
    [J]. PHYSICAL REVIEW D, 1995, 51 (12): : 7052 - 7059
  • [22] Nonrelativistic Chern-Simons vortices on the torus
    Akerblom, N.
    Cornelissen, G.
    Stavenga, G.
    van Holten, J. W.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (07)
  • [23] Diamagnetic vortices in Chern-Simons theory
    Anber, Mohamed M.
    Burnier, Yannis
    Sabancilar, Eray
    Shaposhnikov, Mikhail
    [J]. PHYSICAL REVIEW D, 2015, 92 (08):
  • [24] Rotational anomaly for the Chern-Simons vortices
    Ma, ZS
    Chen, YX
    Li, K
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 24 (04) : 491 - 494
  • [25] The topology of nontopological Chern-Simons vortices
    Horváthy, PA
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1999, 49 (01) : 67 - 70
  • [26] CHERN-SIMONS VORTICES COUPLED TO GRAVITY
    LONDON, LAJ
    [J]. PHYSICS LETTERS B, 1995, 354 (1-2) : 52 - 57
  • [27] Magnus force and Chern-Simons vortices
    Liu, Q.
    Stern, A.
    [J]. Physical Review D Particles, Fields, Gravitation and Cosmology, 52 (02):
  • [28] Uniqueness of selfdual periodic Chern-Simons vortices of topological-type
    Tarantello, Gabriella
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 29 (02) : 191 - 217
  • [29] Quantum Chern-Simons vortices on a sphere
    Romao, NM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (08) : 3445 - 3469
  • [30] STABILITY OF NONTOPOLOGICAL CHERN-SIMONS VORTICES IN A PHI(2)-MODEL
    ESCALONA, J
    TORRES, M
    ANTILLON, A
    [J]. MODERN PHYSICS LETTERS A, 1993, 8 (31) : 2955 - 2962