Recursive Taylor Series Expansion Method for Rigid-Body Molecular Dynamics

被引:8
|
作者
Akimov, Alexey V. [1 ]
Kolomeisky, Anatoly B. [1 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
SIMULATION; SURFACES; BODIES; INTEGRATOR; MONOLAYERS; MECHANISM; DIFFUSION; NANOCARS; AU(111); SYSTEMS;
D O I
10.1021/ct200334e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamics computer simulation methods are very important for understanding mechanisms of chemical, physical, and biological processes. The reliability of molecular dynamics simulations strongly depends on the integration schemes used in the simulations. In this work, we developed new rigid body integration schemes for molecular dynamics simulations. Our approach is based on a numerically exact solution to the free rigid body problem, which is used in the classical propagator splitting scheme. We use the Taylor series expansion of rotational dynamical variables in conjunction with the recursive solution for higher order derivatives of these variables. Such an approach is computationally very efficient, robust, and easy to implement, and it does not employ Jacobi elliptic functions, while still providing the numerically exact solution of the free rigid body problem. Our studies showed that the new integration methods have long-time stability and accuracy properties which are comparable to those of existing symplectic integrators. The extension to the case of a canonical ensemble is also developed, allowing one to perform simulations at constant temperatures.
引用
收藏
页码:3062 / 3071
页数:10
相关论文
共 50 条
  • [21] Dynamics of holonomic rigid-body systems
    Andreev, YM
    Morachkovskii, OK
    [J]. INTERNATIONAL APPLIED MECHANICS, 2005, 41 (07) : 817 - 824
  • [22] Rigid-body dynamics with friction and impact
    Stewart, DE
    [J]. SIAM REVIEW, 2000, 42 (01) : 3 - 39
  • [23] ON THE DYNAMICS OF THE RIGID-BODY WITH 2 TORQUES
    PUTA, M
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (04): : 377 - 380
  • [24] On the transitivity equations of rigid-body dynamics
    Papastavridis, John G.
    [J]. Journal of Applied Mechanics, Transactions ASME, 1992, 59 (04): : 955 - 962
  • [25] ON THE TRANSITIVITY EQUATIONS OF RIGID-BODY DYNAMICS
    PAPASTAVRIDIS, JG
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1992, 59 (04): : 955 - 962
  • [26] The Hess case in rigid-body dynamics
    Borisov, AV
    Mamayev, IS
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2003, 67 (02): : 227 - 235
  • [27] DOCKING DYNAMICS FOR RIGID-BODY SPACECRAFT
    GRUBIN, C
    [J]. AIAA JOURNAL, 1964, 2 (01) : 5 - 12
  • [28] The conversion of rigid-body rotational dynamics to particle dynamics
    Wang, WT
    Chang, CO
    Chou, CS
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1998, 37 (12A): : 6657 - 6661
  • [29] Conversion of rigid-body rotational dynamics to particle dynamics
    Wang, Wen-Tsung
    Chang, Chia-Ou
    Chou, Chan-Shin
    [J]. Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1998, 37 (12 A): : 6657 - 6661
  • [30] A Reparametrization of the Rotation Matrix in Rigid-Body Dynamics
    Zhu, Xiaoqing
    Angeles, Jorge
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2015, 82 (05):