Discriminative Feature Mining and Enhancement Network for Low-Resolution Fine-Grained Image Recognition

被引:17
|
作者
Yan, Tiantian [1 ]
Li, Haojie [1 ]
Sun, Baoli [1 ]
Wang, Zhihui [1 ]
Luo, Zhongxuan [1 ]
机构
[1] Dalian Univ Technol, DUT RU Int Sch Informat Sci & Engn, Dalian 116620, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image recognition; Task analysis; Reliability; Image reconstruction; Automobiles; Training; Low-resolution fine-grained image recognition; informative part mining; part selection; SUPERRESOLUTION;
D O I
10.1109/TCSVT.2022.3144186
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing fine-grained image recognition methods are difficult to learn complete discriminative features from low-resolution (LR) data, because the original subtle inter-class distinctions become slimmer with the reduction of the image resolution. Besides, existing methods of LR fine-grained image recognition and general LR image recognition only consider the restoration and extraction of global discriminative features, ignoring unreliable local fine-grained details can be detrimental to final recognition. To address the above problems, we propose a multi-tasking framework, discriminative feature mining and enhancement network (DME-Net), for the LR fine-grained image recognition task, which aims to capture the reliable object descriptions from macro and micro perspectives, respectively. Macroscopically, we train the framework's ability to recover and extract global discriminative features based on the whole images. Microscopically, we purposefully reinforce the framework's ability to repair and capture the local discriminative details on the mined informative parts. To precisely excavate the most potential parts, we design an informative part mining (IPM) module, in which we firstly employ a part generation layer to predict several part masks that focus on different discriminative parts under the guidance of discrepancy loss and discriminant loss. Then we introduce a part selection (PS) submodule to further screen out a group of most informative parts from the predicted part masks according to their corresponding scores, which measure the semantic correlation degree of each part to the others. Experimental results on three benchmark datasets and one retail product dataset consistently show that our proposed framework can significantly boost the performance of the baseline model. Besides, extensive ablation studies are conducted, which further prove the effectiveness of each component of our designs.
引用
收藏
页码:5319 / 5330
页数:12
相关论文
共 50 条
  • [21] Discriminative semantic region selection for fine-grained recognition
    Zhang, Chunjie
    Wang, Da-Han
    Li, Haisheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 77
  • [22] A Semantic-driven Image Scene Fine-grained Enhancement Recognition
    Qu, Dongyang
    Li, Yaling
    Luo, Xiaoyan
    Shi, Xiaofeng
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [23] Multitask Fine-Grained Feature Mining for Multilabel Remote Sensing Image Classification
    Guo, Jie
    Sun, Hao
    Han, Jinheng
    Song, Bin
    Chi, Yuhao
    Song, Bingxi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [24] Fine-grained pornographic image recognition with multiple feature fusion transfer learning
    Lin, Xinnan
    Qin, Feiwei
    Peng, Yong
    Shao, Yanli
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (01) : 73 - 86
  • [25] Fine-grained pornographic image recognition with multiple feature fusion transfer learning
    Xinnan Lin
    Feiwei Qin
    Yong Peng
    Yanli Shao
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 73 - 86
  • [26] A cross-granularity feature fusion method for fine-grained image recognition
    Wu, Shan
    Hu, Jun
    Sun, Chen
    Zhong, Fujin
    Zhang, Qinghua
    Wang, Guoyin
    APPLIED INTELLIGENCE, 2025, 55 (01)
  • [27] Dynamic Position-aware Network for Fine-grained Image Recognition
    Wang, Shijie
    Li, Haojie
    Wang, Zhihui
    Ouyang, Wanli
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2791 - 2799
  • [28] Fine-Grained Image Recognition of Wild Mushroom Based on Multiscale Feature Guide
    Zhang Zhigang
    Yu Pengfei
    Li Haiyan
    Li Hongsong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [29] Learning to locate for fine-grained image recognition
    Chen, Jiamin
    Hu, Jianguo
    Li, Shiren
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 206
  • [30] Incremental Learning for Fine-Grained Image Recognition
    Cao, Liangliang
    Hsiao, Jenhao
    de Juan, Paloma
    Li, Yuncheng
    Thomee, Bart
    ICMR'16: PROCEEDINGS OF THE 2016 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2016, : 363 - 366