An Affordable Upper-Limb Exoskeleton Concept for Rehabilitation Applications

被引:19
|
作者
Palazzi, Emanuele [1 ]
Luzi, Luca [2 ]
Dimo, Eldison [2 ]
Meneghetti, Matteo [2 ]
Vicario, Rudy [2 ]
Luzia, Rafael Ferro [3 ]
Vertechy, Rocco [1 ]
Calanca, Andrea [2 ]
机构
[1] Univ Bologna, Dept Ind Engn, I-40131 Bologna, Italy
[2] Univ Verona, Dept Comp Sci, I-37134 Verona, Italy
[3] Univ Sao Paulo, Escola Engn Sao Carlos, BR-05508070 Sao Paulo, Brazil
基金
欧盟地平线“2020”;
关键词
exoskeleton; affordability; affordable robotics; rehabilitation robotics; 3D printing; mechanical design; low cost; ACTUATED EXOSKELETON; SINGLE-BLIND; STROKE; DESIGN; ROBOTS; FIBER;
D O I
10.3390/technologies10010022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent decades, many researchers have focused on the design and development of exoskeletons. Several strategies have been proposed to develop increasingly more efficient and biomimetic mechanisms. However, existing exoskeletons tend to be expensive and only available for a few people. This paper introduces a new gravity-balanced upper-limb exoskeleton suited for rehabilitation applications and designed with the main objective of reducing the cost of the components and materials. Regarding mechanics, the proposed design significantly reduces the motor torque requirements, because a high cost is usually associated with high-torque actuation. Regarding the electronics, we aim to exploit the microprocessor peripherals to obtain parallel and real-time execution of communication and control tasks without relying on expensive RTOSs. Regarding sensing, we avoid the use of expensive force sensors. Advanced control and rehabilitation features are implemented, and an intuitive user interface is developed. To experimentally validate the functionality of the proposed exoskeleton, a rehabilitation exercise in the form of a pick-and-place task is considered. Experimentally, peak torques are reduced by 89% for the shoulder and by 84% for the elbow.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] ABLE, an Innovative Transparent Exoskeleton for the Upper-Limb
    Garrec, P.
    Friconneau, J. P.
    Measson, Y.
    Perrot, Y.
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 1483 - 1488
  • [32] Design and Implementation of a Rehabilitation Upper-limb Exoskeleton Robot Controlled by Cognitive and Physical Interfaces
    Gonzalez-Mendoza, Arturo
    Quinones-Uriostegui, Ivett
    Salazar-Cruz, Sergio
    Perez-Sanpablo, Alberto-Isaac
    Lopez-Gutierrez, Ricardo
    Lozano, Rogelio
    JOURNAL OF BIONIC ENGINEERING, 2022, 19 (05) : 1374 - 1391
  • [33] Prescribed Performance Control for the Upper-Limb Exoskeleton System in Passive Rehabilitation Training Tasks
    Zhao, Zhirui
    Xiao, Jichun
    Jia, Hongyun
    Zhang, Hang
    Hao, Lina
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [34] Design of a Compliant Upper-Limb Rehabilitation Exoskeleton based on Novel Series Elastic Actuators
    Zhao, Weihao
    Wang, Jiachen
    Qian, Wei
    Xiao, Xiaohui
    Guo, Zhao
    2021 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2021, : 566 - 571
  • [35] Development and Validation of a Kinematically Accurate Upper-Limb Exoskeleton Digital Twin for Stroke Rehabilitation
    Ratschat, Alexandre
    Lomba, Tiago M. C.
    Dalla Gasperina, Stefano
    Marchal-Crespo, Laura
    2023 INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, ICORR, 2023,
  • [36] Design and Implementation of a Rehabilitation Upper-limb Exoskeleton Robot Controlled by Cognitive and Physical Interfaces
    Arturo González-Mendoza
    Ivett Quiñones-Urióstegui
    Sergio Salazar-Cruz
    Alberto-Isaac Perez-Sanpablo
    Ricardo López-Gutiérrez
    Rogelio Lozano
    Journal of Bionic Engineering, 2022, 19 : 1374 - 1391
  • [37] AGREE: A Compliant-Controlled Upper-Limb Exoskeleton for Physical Rehabilitation of Neurological Patients
    Dalla Gasperina, Stefano
    Gandolla, Marta
    Longatelli, Valeria
    Panzenbeck, Mattia
    Luciani, Beatrice
    Braghin, Francesco
    Pedrocchi, Alessandra
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2023, 5 (01): : 143 - 154
  • [38] Passive and active rehabilitation control of human upper-limb exoskeleton robot with dynamic uncertainties
    Brahmi, Brahim
    Saad, Maarouf
    Luna, Cristobal Ochoa
    Archambault, Philippe S.
    Rahman, Mohammad H.
    ROBOTICA, 2018, 36 (11) : 1757 - 1779
  • [39] Implementation of Resistance Training Using an Upper-Limb Exoskeleton Rehabilitation Device for Elbow Joint
    Song, Zhibin
    Guo, Shuxiang
    Pang, Muye
    Zhang, Songyuan
    Xiao, Nan
    Gao, Baofeng
    Shi, Liwei
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2014, 34 (02) : 188 - 196
  • [40] Sensor Reduction, Estimation, and Control of an Upper-Limb Exoskeleton
    Sun, Jianwei
    Shen, Yang
    Rosen, Jacob
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 1012 - 1019