n-DIMENSIONAL PROJECTIVE VARIETIES WITH THE ACTION OF AN ABELIAN GROUP OF RANK n-1

被引:18
|
作者
Zhang, De-Qi [1 ]
机构
[1] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, Singapore 119076, Singapore
关键词
Automorphism; iteration; complex dynamics; tori; topological entropy; COMPACT KAHLER-MANIFOLDS; AUTOMORPHISM-GROUPS;
D O I
10.1090/tran/6629
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a normal projective variety of dimension n >= 3 admitting the action of the group G := Z(circle plus n-1) such that every non-trivial element of G is of positive entropy. We show: 'X is not rationally connected' double right arrow 'X is G-equivariant birational to the quotient of a complex torus' double left arrow double right arrow 'K-X + D is pseudo-effective for some G-periodic effective fractional divisor D'. To apply, one uses the above and the fact: ` the Kodaira dimension kappa(X) >= 0' double right arrow 'X is not uniruled' double right arrow 'X is not rationally connected'. We may generalize the result to the case of solvable G.
引用
收藏
页码:8849 / 8872
页数:24
相关论文
共 50 条