On embedding of repetitive Meyer multiple sets into model multiple sets

被引:4
|
作者
Aujogue, Jean-Baptiste [1 ,2 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[2] Univ Santiago Chile, Dept Matemat, Fac Ciencia, Aladema 3363,Estn Cent, Santiago, Chile
关键词
PURE POINT DIFFRACTION; DYNAMICAL-SYSTEMS; ENVELOPING SEMIGROUPS; TOEPLITZ FLOWS;
D O I
10.1017/etds.2014.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Model sets are always Meyer sets but the converse is generally not true. In this work we show that for a repetitive Meyer multiple set of R-d with associated dynamical system. (X, R-d), the property of being a model multiple set is equivalent to (X, R-d) being almost automorphic. We deduce this by showing that a repetitive Meyer multiple set can always be embedded into a repetitive model multiple set having a smaller group of topological eigenvalues.
引用
收藏
页码:1679 / 1702
页数:24
相关论文
共 50 条
  • [21] LOWER BOUNDS ON MULTIPLE DIFFERENCE SETS
    CHEN, W
    KLOVE, T
    [J]. DISCRETE MATHEMATICS, 1991, 98 (01) : 9 - 21
  • [22] Multiple sets of fringes in the Michelson interferometer
    Walerstein, I
    Woodson, RA
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1936, 26 (06) : 267 - 271
  • [23] Multiple walsh series and Zygmund sets
    Plotnikov, M. G.
    [J]. MATHEMATICAL NOTES, 2014, 95 (5-6) : 686 - 696
  • [24] Multiple sets of rules for text categorization
    Bi, YX
    Anderson, T
    McClean, S
    [J]. ADVANCES IN INFORMATION SYSTEMS, PROCEEDINGS, 2004, 3261 : 263 - 272
  • [25] Rough Sets Defined by Multiple Relations
    Jarvinen, Jouni
    Kovacs, Laszlo
    Radeleczki, Sandor
    [J]. ROUGH SETS, IJCRS 2019, 2019, 11499 : 40 - 51
  • [26] Nonmonotonic reasoning with multiple belief sets
    Engelfriet, J
    Herre, H
    Treur, J
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 1998, 24 (1-4) : 225 - 248
  • [27] Switched systems with multiple invariant sets
    Dorothy, Michael
    Chung, Soon-Jo
    [J]. SYSTEMS & CONTROL LETTERS, 2016, 96 : 103 - 109
  • [28] On uniqueness sets for multiple Walsh series
    Plotnikov, M. G.
    [J]. MATHEMATICAL NOTES, 2007, 81 (1-2) : 234 - 246
  • [29] Nonmonotonic reasoning with multiple belief sets
    Joeri Engelfriet
    Heinrich Herre
    Jan Treur
    [J]. Annals of Mathematics and Artificial Intelligence, 1998, 24 : 225 - 248
  • [30] Multiple correlation analysis of fuzzy sets
    Lin, NP
    [J]. COMPUTATIONAL SCIENCE - ICCS 2003, PT IV, PROCEEDINGS, 2003, 2660 : 950 - 957