On embedding of repetitive Meyer multiple sets into model multiple sets

被引:4
|
作者
Aujogue, Jean-Baptiste [1 ,2 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[2] Univ Santiago Chile, Dept Matemat, Fac Ciencia, Aladema 3363,Estn Cent, Santiago, Chile
关键词
PURE POINT DIFFRACTION; DYNAMICAL-SYSTEMS; ENVELOPING SEMIGROUPS; TOEPLITZ FLOWS;
D O I
10.1017/etds.2014.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Model sets are always Meyer sets but the converse is generally not true. In this work we show that for a repetitive Meyer multiple set of R-d with associated dynamical system. (X, R-d), the property of being a model multiple set is equivalent to (X, R-d) being almost automorphic. We deduce this by showing that a repetitive Meyer multiple set can always be embedded into a repetitive model multiple set having a smaller group of topological eigenvalues.
引用
收藏
页码:1679 / 1702
页数:24
相关论文
共 50 条
  • [1] OPTIMAL EMBEDDING OF MEYER SETS INTO MODEL SETS
    Aujogue, Jean-Baptiste
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (03) : 1277 - 1288
  • [2] On the Cardinality and Power Set of Fuzzy Sets and Multiple Sets
    Sanjitha, R.
    Baiju, T.
    S. Pai, Sandhya
    [J]. ADVANCES IN FUZZY SYSTEMS, 2024, 2024
  • [3] On multiple sum and product sets of finitie sets of integers
    Bourgain, J
    Chang, MC
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 337 (08) : 499 - 503
  • [4] Fitting multiple models to multiple data sets
    Marques, Goncalo M.
    Lika, Konstadia
    Augustine, Starrlight
    Pecquerie, Laure
    Kooijman, Sebastiaan A. L. M.
    [J]. JOURNAL OF SEA RESEARCH, 2019, 143 : 48 - 56
  • [5] MULTIPLE MULTIPLE-REDUCIBILITY OF INDEX SETS
    KHISAMIEV, ZG
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 1984, 25 (04) : 665 - 671
  • [6] Deforming Meyer sets
    Lee, Jeong-Yup
    Moody, Robert V.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (08) : 1919 - 1924
  • [7] A Generative Model for the Joint Registration of Multiple Point Sets
    Evangelidis, Georgios D.
    Kounades-Bastian, Dionyssos
    Horaud, Radu
    Psarakis, Emmanouil Z.
    [J]. COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 : 109 - 122
  • [8] Meyer sets and their duals
    Moody, RV
    [J]. MATHEMATICS OF LONG-RANGE APERIODIC ORDER, 1997, 489 : 403 - 441
  • [9] On the multiple Borsuk numbers of sets
    Hujter, Mihaly
    Langi, Zsolt
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2014, 199 (01) : 219 - 239
  • [10] Robust separation of multiple sets
    Yeganova, LE
    Falk, JE
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (03) : 1845 - 1856