Parametric estimation in a model for PolSAR images

被引:0
|
作者
Maria Magdalena, Lucini [1 ,2 ]
Luis Miguel, Duarte [1 ]
机构
[1] Univ Nacl Nordeste, FaCENA, Dept Matemat, Av Libertad 5460, RA-3400 Corrientes, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Av Libertad 5460, RA-3400 Corrientes, Argentina
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The scaled Complex Wishart distribution is a model that fits very well multilook full polarimetric Synthetic Aperture Radar (PolSAR) data from homogeneous regions. Its parameters, L and Sigma, are intrinsicaly related to the physical process of image aquisition giving information about the number of looks (L) and brightness (vertical bar Sigma vertical bar) of the image. Several techniques commonly used in image processing and understanding, such as image classification and segmentation, need to estimate these parameters. Assuming L known, in this work we propose a robust estimate of Sigma based on Huber ' s function. It is computed by means of a fixed point algorithm and its performance under different contamination scenarios is compared to that of the Maximun Likelihood estimator by means of MonteCarlo experiments. Stochastic distances and matrix bias are used to assess these performances. Results here obtained suggest the convenience of using a robust estimator of Sigma.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Unsupervised learning rules for POLSAR images analysis
    Signal Processing Laboratory, Electrical Engineering Faculty, USTHB, P. O. Box 32, El-Alia, Bab-Ezzouar, Algiers
    16111, Algeria
    Neural Networks Signal Process Proc IEEE, 1600, (567-576):
  • [32] Feature Selection for Edge Detection in PolSAR Images
    De Borba, Anderson A.
    Muhuri, Arnab
    Marengoni, Mauricio
    Frery, Alejandro C.
    REMOTE SENSING, 2023, 15 (09)
  • [33] A Distribution Independent Ship Detector for PolSAR Images
    Xu, Zhou
    Fan, Chongyi
    Cheng, Shuiying
    Wang, Jian
    Huang, Xiaotao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 3774 - 3786
  • [34] MULTITEMPORAL MULTIDIMENSIONAL SPECKLE FILTERING OF POLSAR IMAGES
    Salehi, Maryam
    Mohammadzadeh, Ali
    Maghsoudi, Yasser
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4749 - 4752
  • [35] RIEMANNIAN SPARSE CODING FOR CLASSIFICATION OF POLSAR IMAGES
    Yang, Wen
    Zhong, Neng
    Yang, Xiangli
    Cherian, Anoop
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5698 - 5701
  • [36] Random Ferns for Semantic Segmentation of PolSAR Images
    Wei, Pengchao
    Hansch, Ronny
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Modeling of the impact of the soil roughness on PolSAR images
    Weissgerber, Flora
    Colin-Koeniguer, Elise
    Trouve, Nicolas
    13TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR, EUSAR 2021, 2021, : 599 - 604
  • [38] Comparison of change detection statistics in POLSAR images
    Kersten, PR
    Lee, JS
    Ainsworth, TL
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 4836 - 4839
  • [39] PolSAR2PolSAR: A semi-supervised despeckling algorithm for polarimetric SAR images
    Mendes, Cristiano Ulondu
    Dalsasso, Emanuele
    Zhang, Yi
    Denis, Loic
    Tupin, Florence
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2025, 220 : 783 - 798
  • [40] Multiple parametric motion model estimation and segmentation
    Montoliu, R
    Pla, F
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 933 - 936