Real-time detection network for tiny traffic sign using multi-scale attention module

被引:20
|
作者
Yang TingTing [1 ]
Tong Chao [1 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
基金
国家重点研发计划; 国家自然科学基金重大研究计划; 北京市自然科学基金; 中国国家自然科学基金;
关键词
tiny object detection; traffic sign detection; multi-scale attention module; real-time; GRADIENTS;
D O I
10.1007/s11431-021-1950-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As one of the key technologies of intelligent vehicles, traffic sign detection is still a challenging task because of the tiny size of its target object. To address the challenge, we present a novel detection network improved from yolo-v3 for the tiny traffic sign with high precision in real-time. First, a visual multi-scale attention module (MSAM), a light-weight yet effective module, is devised to fuse the multi-scale feature maps with channel weights and spatial masks. It increases the representation power of the network by emphasizing useful features and suppressing unnecessary ones. Second, we exploit effectively fine-grained features about tiny objects from the shallower layers through modifying backbone Darknet-53 and adding one prediction head to yolo-v3. Finally, a receptive field block is added into the neck of the network to broaden the receptive field. Experiments prove the effectiveness of our network in both quantitative and qualitative aspects. The mAP@0.5 of our network reaches 0.965 and its detection speed is 55.56 FPS for 512 x 512 images on the challenging Tsinghua-Tencent 100k (TT100k) dataset.
引用
收藏
页码:396 / 406
页数:11
相关论文
共 50 条
  • [31] Real-time fabric defect detection based on multi-scale convolutional neural network
    Zhao, Shuxuan
    Yin, Li
    Zhang, Jie
    Wang, Junliang
    Zhong, Ray
    IET COLLABORATIVE INTELLIGENT MANUFACTURING, 2020, 2 (04) : 189 - 196
  • [32] Learning multi-layer interactive residual feature fusion network for real-time traffic sign detection with stage routing attention
    Zhang, Jianming
    Yi, Yao
    Wang, Zulou
    Alqahtani, Fayez
    Wang, Jin
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (05)
  • [33] Multi-scale ResNet for real-time underwater object detection
    Pan, Tien-Szu
    Huang, Huang-Chu
    Lee, Jen-Chun
    Chen, Chung-Hsien
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (05) : 941 - 949
  • [34] Multi-scale ResNet for real-time underwater object detection
    Tien-Szu Pan
    Huang-Chu Huang
    Jen-Chun Lee
    Chung-Hsien Chen
    Signal, Image and Video Processing, 2021, 15 : 941 - 949
  • [35] Traffic Sign Detection in Complex Environment based on Multi-Scale Feature Enhancement and Group Attention
    Fu, Jinfei
    Zhou, Yinghua
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 137 - 142
  • [36] Real-time instance segmentation of surgical instruments using attention and multi-scale feature fusion
    Angeles Ceron, Juan Carlos
    Ochoa Ruiz, Gilberto
    Chang, Leonardo
    Ali, Sharib
    MEDICAL IMAGE ANALYSIS, 2022, 81
  • [37] Real-time traffic sign detection based on multiscale attention and spatial information aggregator
    Zhang, Jianming
    Ye, Zi
    Jin, Xiaokang
    Wang, Jin
    Zhang, Jin
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2022, 19 (06) : 1155 - 1167
  • [38] Real-time traffic sign detection based on multiscale attention and spatial information aggregator
    Jianming Zhang
    Zi Ye
    Xiaokang Jin
    Jin Wang
    Jin Zhang
    Journal of Real-Time Image Processing, 2022, 19 : 1155 - 1167
  • [39] Real-Time Traffic Sign Detection Using SURF Features on FPGA
    Zhao, Jin
    Zhu, Sichao
    Huang, Xinming
    2013 IEEE CONFERENCE ON HIGH PERFORMANCE EXTREME COMPUTING (HPEC), 2013,
  • [40] Localized Traffic Sign Detection with Multi-scale Deconvolution Networks
    Pei, Songwen
    Tang, Fuwu
    Ji, Yanfei
    Fan, Jing
    Ning, Zhong
    2018 IEEE 42ND ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2018, : 355 - 360