EEG-based Golf Putt Outcome Prediction Using Support Vector Machine

被引:0
|
作者
Guo, Qing [1 ]
Wu, Jingxian [1 ]
Li, Baohua [1 ]
机构
[1] Univ Arkansas, Dept Elect Engn, Fayetteville, AR 72701 USA
关键词
EEG; BCI; coherence; support vector machine; classification; golf; prediction; COHERENCE; POWER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a method is proposed to predict the putt outcomes of golfers based on their electroencephalogram (EEG) signals recorded before the impact between the putter and the ball. This method can be used into a brain-computer interface system that encourages golfers for putting when their EEG patterns show that they are ready. In the proposed method, multi-channel EEG trials of a golfer are collected from the electrodes placed at different scalp locations in one particular second when she/he concentrates on putting preparation. The EEG trials are used to predict two possible outcomes: successful or failed putts. This binary classification is performed by the support vector machine (SVM). Based on the collected time-domain EEG signals, the spectral coherences from 22-pair electrodes are calculated and then used as the feature and input for the SVM algorithm. Our experimental results show that the proposed method using EEG coherence significantly outperforms the SVM with other popular features such as power spectral density (PSD), average PSD, power, and average spectral coherence.
引用
收藏
页码:36 / 42
页数:7
相关论文
共 50 条
  • [41] Classifying EEG Using Incremental Support Vector Machine in BCIs
    Zheng, Xiaoming
    Yang, Banghua
    Li, Xiang
    Zan, Peng
    Dong, Zheng
    LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, 2010, 6330 : 604 - 610
  • [42] EEG signal classification using universum support vector machine
    Richhariya, B.
    Tanveer, M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 106 : 169 - 182
  • [43] Epilepsy EEG Classification Based on Convolution Support Vector Machine
    Xin, Qi
    Hu, Shaohai
    Liu, Shuaiqi
    Ma, Xiaole
    Lv, Hui
    Zhang, Yu-Dong
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2021, 11 (01) : 25 - 32
  • [44] EEG-based work experience prediction using hazard recognition
    Wang, Mohan
    Zhao, Yiyu
    Liao, Pin-Chao
    AUTOMATION IN CONSTRUCTION, 2022, 136
  • [45] EEG-Based Human Emotion Prediction Using an LSTM Model
    Mohsen, Saeed
    Alharbi, Abdullah G.
    2021 IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2021, : 458 - 461
  • [46] EPILEPTIC SEIZURE PREDICTION USING WAVELET TRANSFORM, FRACTAL DIMENSION, SUPPORT VECTOR MACHINE, AND EEG SIGNALS
    Perez-Sanchez, Andrea V.
    Valtierra-Rodriguez, Martin
    Perez-Ramirez, Carlos A.
    De-Santiago-Perez, J. Jesus
    Amezquita-Sanchez, Juan P.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [47] Rockburst prediction using evolutionary support vector machine
    Zhao, HB
    PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL V, PTS A AND B, 2005, 5 : 494 - 498
  • [48] Prediction of the β-hairpins in proteins using support vector machine
    Hu, Xiu Zhen
    Li, Qian Zhong
    PROTEIN JOURNAL, 2008, 27 (02): : 115 - 122
  • [49] Prediction of the β-Hairpins in Proteins Using Support Vector Machine
    Xiu Zhen Hu
    Qian Zhong Li
    The Protein Journal, 2008, 27 : 115 - 122
  • [50] Prediction of nucleosome positioning using a support vector machine
    Bishop, Eric
    Tullius, Thomas D.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2007, 24 (06): : 624 - 624