Multiparametric MRI and Radiomics in Prostate Cancer: A Review of the Current Literature

被引:28
|
作者
Midiri, Federico [1 ]
Vernuccio, Federica [1 ]
Purpura, Pierpaolo [2 ]
Alongi, Pierpaolo [3 ]
Bartolotta, Tommaso Vincenzo [1 ,2 ]
机构
[1] Univ Hosp Paolo Giaccone, Sect Radiol BiND, I-90127 Palermo, Italy
[2] Fdn Ist Giuseppe Giglio, Dept Radiol, Via Pisciotto, I-90015 Palermo, Italy
[3] Fdn Ist Giuseppe Giglio, Nucl Med Unit, Via Pisciotto, I-90015 Palermo, Italy
关键词
radiomics; magnetic resonance imaging; prostate; cancer; PI-RADS; Gleason score; MULTI-PARAMETRIC MRI; CLINICALLY SIGNIFICANT; TEXTURAL FEATURES; RESONANCE; DIAGNOSIS; ACCURACY; UTILITY; SCAN;
D O I
10.3390/diagnostics11101829
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Prostate cancer (PCa) represents the fourth most common cancer and the fifth leading cause of cancer death of men worldwide. Multiparametric MRI (mp-MRI) has high sensitivity and specificity in the detection of PCa, and it is currently the most widely used imaging technique for tumor localization and cancer staging. mp-MRI plays a key role in risk stratification of naive patients, in active surveillance for low-risk patients, and in monitoring recurrence after definitive therapy. Radiomics is an emerging and promising tool which allows a quantitative tumor evaluation from radiological images via conversion of digital images into mineable high-dimensional data. The purpose of radiomics is to increase the features available to detect PCa, to avoid unnecessary biopsies, to define tumor aggressiveness, and to monitor post-treatment recurrence of PCa. The integration of radiomics data, including different imaging modalities (such as PET-CT) and other clinical and histopathological data, could improve the prediction of tumor aggressiveness as well as guide clinical decisions and patient management. The purpose of this review is to describe the current research applications of radiomics in PCa on MR images.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Role of multiparametric prostate MRI in the management of prostate cancer
    O'Connor, Luke P.
    Lebastchi, Amir H.
    Horuz, Rahim
    Rastinehad, Ardeshir R.
    Siddiqui, M. Minhaj
    Grummet, Jeremy
    Kastner, Christof
    Ahmed, Hashim U.
    Pinto, Peter A.
    Turkbey, Baris
    WORLD JOURNAL OF UROLOGY, 2021, 39 (03) : 651 - 659
  • [22] Prostate cancer and its mimics at multiparametric prostate MRI
    Yu, J.
    Fulcher, A. S.
    Turner, M. A.
    Cockrell, C. H.
    Cote, E. P.
    Wallace, T. J.
    BRITISH JOURNAL OF RADIOLOGY, 2014, 87 (1037):
  • [23] Role of multiparametric prostate MRI in the management of prostate cancer
    Luke P. O’Connor
    Amir H. Lebastchi
    Rahim Horuz
    Ardeshir R. Rastinehad
    M. Minhaj Siddiqui
    Jeremy Grummet
    Christof Kastner
    Hashim U. Ahmed
    Peter A. Pinto
    Baris Turkbey
    World Journal of Urology, 2021, 39 : 651 - 659
  • [24] Radiomics and machine learning of multisequence multiparametric prostate MRI: Towards improved non-invasive prostate cancer characterization
    Toivonen, Jussi
    Perez, Ileana Montoya
    Movahedi, Parisa
    Merisaari, Harri
    Pesola, Marko
    Taimen, Pekka
    Bostrom, Peter J.
    Pohjankukka, Jonne
    Kiviniemi, Aida
    Pahikkala, Tapio
    Aronen, Hannu J.
    Jambor, Ivan
    PLOS ONE, 2019, 14 (07):
  • [25] Multiparametric MRI Versus Multiparametric US in the Detection of Prostate Cancer
    Drudi, Francesco M.
    Cantisani, Vito
    Angelini, Flavia
    Ciccariello, Mauro
    Messineo, Daniela
    Ettorre, Evaristo
    Liberatore, Mauro
    Scialpi, Michele
    ANTICANCER RESEARCH, 2019, 39 (06) : 3101 - 3110
  • [26] Targeting Hypoxia in Prostate Cancer Using Multiparametric MRI: Radiomics Meets Bio-Focused Radiotherapy
    Sun, Y.
    Williams, S.
    Byrne, D.
    Mitchell, C.
    Reynolds, H.
    Murphy, D.
    Haworth, A.
    MEDICAL PHYSICS, 2017, 44 (06) : 3104 - 3104
  • [27] A dynamic-static combination model based on radiomics features for prostate cancer using multiparametric MRI
    Li, Shuqin
    Zheng, Tingting
    Fan, Zhou
    Qu, Hui
    Wang, Jianfeng
    Bi, Jianbin
    Lv, Qingjie
    Zhang, Gejun
    Cui, Xiaoyu
    Zhao, Yue
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (01):
  • [28] Radiomics Approach to the Detection of Prostate Cancer Using Multiparametric MRI: A Validation Study Using Prostate-Cancer-Tissue-Mimicking Phantoms
    Alshomrani, Faisal
    Alsaedi, Basim S. O.
    Wei, Cheng
    Szewczyk-Bieda, Magdalena
    Gandy, Stephen
    Wilson, Jennifer
    Huang, Zhihong
    Nabi, Ghulam
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [29] Incidental Bladder Cancer in multiparametric MRI of the Prostate
    Brose, Alexander
    Krombach, Gabriele Anja
    Roller, Fritz Christian
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2022, 194 (02): : 205 - 207
  • [30] Multiparametric MRI: Local Staging of Prostate Cancer
    F. A. Carpagnano
    L. Eusebi
    U. Tupputi
    V. Testini
    W. Giannubilo
    F. Bartelli
    G. Guglielmi
    Current Radiology Reports, 8