Epidemic spreading in modular time-varying networks

被引:79
|
作者
Nadini, Matthieu [1 ,6 ]
Sun, Kaiyuan [2 ]
Ubaldi, Enrico [3 ]
Starnini, Michele [4 ,5 ]
Rizzo, Alessandro [6 ]
Perra, Nicola [7 ]
机构
[1] NYU, Tandon Sch Engn, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA
[2] Northeastern Univ, Lab Modeling Biol & Sociotech Syst, Boston, MA 02115 USA
[3] ISI Fdn, Inst Sci Interchange, Turin, Italy
[4] Univ Barcelona, Dept Fis Fondamental, Marti i Franques 1, E-08028 Barcelona, Spain
[5] Univ Barcelona, UBICS, Barcelona, Spain
[6] Politecn Torino, Dipartimento Elettron & Telecomunicaz, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[7] Univ Greenwich, Ctr Business Networks Anal, London, England
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家科学基金会;
关键词
MODEL;
D O I
10.1038/s41598-018-20908-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the effects of modular and temporal connectivity patterns on epidemic spreading. To this end, we introduce and analytically characterise a model of time-varying networks with tunable modularity. Within this framework, we study the epidemic size of Susceptible-Infected-Recovered, SIR, models and the epidemic threshold of Susceptible-Infected-Susceptible, SIS, models. Interestingly, we find that while the presence of tightly connected clusters inhibits SIR processes, it speeds up SIS phenomena. In this case, we observe that modular structures induce a reduction of the threshold with respect to time-varying networks without communities. We confirm the theoretical results by means of extensive numerical simulations both on synthetic graphs as well as on a real modular and temporal network.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Epidemic spreading on modular networks: The fear to declare a pandemic
    Valdez, Lucas D.
    Braunstein, Lidia A.
    Havlin, Shlomo
    [J]. PHYSICAL REVIEW E, 2020, 101 (03)
  • [22] Stability of Spreading Processes over Time-Varying Large-Scale Networks
    Ogura, Masaki
    Preciado, Victor M.
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2016, 3 (01): : 44 - 57
  • [23] The impacts of the individual activity and attractiveness correlation on spreading dynamics in time-varying networks
    Zeng, Lang
    Tang, Ming
    Liu, Ying
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 122
  • [24] Delay-driven phase transitions in an epidemic model on time-varying networks
    Wang, Wen
    Chen, Guanrong
    Wong, Eric W. M.
    [J]. CHAOS, 2024, 34 (04)
  • [25] Computing in Time-Varying Networks
    Santoro, Nicola
    [J]. STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, 2011, 6976 : 4 - 4
  • [26] Synchronization in time-varying networks
    Kohar, Vivek
    Ji, Peng
    Choudhary, Anshul
    Sinha, Sudeshna
    Kurths, Jueergen
    [J]. PHYSICAL REVIEW E, 2014, 90 (02)
  • [27] Survivability in Time-Varying Networks
    Liang, Qingkai
    Modiano, Eytan
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2017, 16 (09) : 2668 - 2681
  • [28] On time-varying collaboration networks
    Viana, Matheus P.
    Amancio, Diego R.
    Costa, Luciano da F.
    [J]. JOURNAL OF INFORMETRICS, 2013, 7 (02) : 371 - 378
  • [29] Locations on time-varying networks
    Hakimi, SL
    Labbé, M
    Schmeichel, EF
    [J]. NETWORKS, 1999, 34 (04) : 250 - 257
  • [30] Survivability in Time-varying Networks
    Liang, Qingkai
    Modiano, Eytan
    [J]. IEEE INFOCOM 2016 - THE 35TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS, 2016,