Adaptive integration of self-motion and goals in posterior parietal cortex

被引:13
|
作者
Alexander, Andrew S. [1 ,2 ]
Tung, Janet C. [1 ]
Chapman, G. William [2 ]
Conner, Allison M. [1 ]
Shelley, Laura E. [1 ]
Hasselmo, Michael E. [2 ]
Nitz, Douglas A. [1 ]
机构
[1] Univ Calif San Diego, Dept Cognit Sci, La Jolla, CA 92093 USA
[2] Boston Univ, Ctr Syst Neurosci, Dept Psychol & Brain Sci, 610 Commonwealth Ave, Boston, MA 02215 USA
来源
CELL REPORTS | 2022年 / 38卷 / 10期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
SUPERIOR COLLICULUS; UNILATERAL NEGLECT; REFERENCE FRAMES; RAT; NEURONS; NAVIGATION; BEHAVIOR; MODULATION; ACTIVATION; LOCOMOTION;
D O I
10.1016/j.celrep.2022.110504
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Rats readily switch between foraging and more complex navigational behaviors such as pursuit of other rats or prey. These tasks require vastly different tracking of multiple behaviorally significant variables including self-motion state. To explore whether navigational context modulates self-motion tracking, we examined self-motion tuning in posterior parietal cortex neurons during foraging versus visual target pursuit. Animals performing the pursuit task demonstrate predictive processing of target trajectories by anticipating and intercepting them. Relative to foraging, pursuit yields multiplicative gain modulation of self -motion tuning and enhances self-motion state decoding. Self-motion sensitivity in parietal cortex neurons is, on average, history dependent regardless of behavioral context, but the temporal window of self-motion integration extends during target pursuit. Finally, many self-motion-sensitive neurons conjunctively track the visual target position relative to the animal. Thus, posterior parietal cortex functions to integrate the location of navigationally relevant target stimuli into an ongoing representation of past, present, and future locomotor trajectories.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals
    Mallory, Caitlin S.
    Hardcastle, Kiah
    Campbell, Malcolm G.
    Attinger, Alexander
    Low, Isabel I. C.
    Raymond, Jennifer L.
    Giocomo, Lisa M.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [32] Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals
    Caitlin S. Mallory
    Kiah Hardcastle
    Malcolm G. Campbell
    Alexander Attinger
    Isabel I. C. Low
    Jennifer L. Raymond
    Lisa M. Giocomo
    Nature Communications, 12
  • [33] Representation of Vestibular and Visual Cues to Self-Motion in Ventral Intraparietal Cortex
    Chen, Aihua
    DeAngelis, Gregory C.
    Angelaki, Dora E.
    JOURNAL OF NEUROSCIENCE, 2011, 31 (33): : 12036 - 12052
  • [34] Independent representations of self-motion and object location in barrel cortex output
    Cheung, Jonathan Andrew
    Maire, Phillip
    Kim, Jinho
    Lee, Kiana
    Flynn, Garrett
    Hires, Samuel Andrew
    PLOS BIOLOGY, 2020, 18 (11)
  • [35] The role of the posterior parietal cortex in coordinate transformations for visual-motor integration
    Andersen, R. A.
    PERCEPTION, 1990, 19 (04) : 348 - 348
  • [36] Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex
    Ibos, Guilhem
    Freedman, David J.
    NEURON, 2014, 83 (06) : 1468 - 1480
  • [37] THE ROLE OF THE POSTERIOR PARIETAL CORTEX IN COORDINATE TRANSFORMATIONS FOR VISUAL-MOTOR INTEGRATION
    ANDERSEN, RA
    PERCEPTION, 1990, 19 (03) : 348 - 348
  • [38] THE ROLE OF THE POSTERIOR PARIETAL CORTEX IN COORDINATE TRANSFORMATIONS FOR VISUAL-MOTOR INTEGRATION
    ANDERSEN, RA
    ZIPSER, D
    CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 1988, 66 (04) : 488 - 501
  • [39] Integration of target and effector information in human posterior parietal cortex for the planning of action
    Medendorp, WP
    Goltz, HC
    Crawford, JD
    Vilis, T
    JOURNAL OF NEUROPHYSIOLOGY, 2005, 93 (02) : 954 - 962
  • [40] Predictive steering: integration of artificial motor signals in self-motion estimation
    Van Helvert, Milou J. L.
    Selen, Luc P. J.
    Van Beers, Robert J.
    Medendorp, W. Pieter
    JOURNAL OF NEUROPHYSIOLOGY, 2022, 128 (06) : 1395 - 1408