Revisiting subgradient extragradient methods for solving variational inequalities

被引:27
|
作者
Tan, Bing [1 ]
Qin, Xiaolong [2 ]
Cho, Sun Young [3 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] Gyeongsang Natl Univ, Dept Human Hlth Care, Jinju, South Korea
关键词
Variational inequality; Inertial extragradient method; Armjio stepsize; Pseudomonotone mapping; Non-Lipschitz operator; STRONG-CONVERGENCE; PROJECTION METHODS;
D O I
10.1007/s11075-021-01243-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, several extragradient algorithms with inertial effects and adaptive non-monotonic step sizes are proposed to solve pseudomonotone variational inequalities in real Hilbert spaces. The strong convergence of the proposed methods is established without the prior knowledge of the Lipschitz constant of the mapping. Some numerical experiments are given to illustrate the advantages and efficiency of the proposed schemes over previously known ones.
引用
收藏
页码:1593 / 1615
页数:23
相关论文
共 50 条
  • [41] Modified Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Jiajia Cheng
    Hongwei Liu
    [J]. Journal of Harbin Institute of Technology(New series), 2022, 29 (04) : 41 - 48
  • [42] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2020, 170 (01) : 319 - 345
  • [43] Analysis of Subgradient Extragradient Iterative Schemes for Variational Inequalities
    Wu, Danfeng
    Zhu, Li-Jun
    Shan, Zhuang
    Yin, Tzu-Chien
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [44] Versions of the Subgradient Extragradient Method for Pseudomonotone Variational Inequalities
    Phan Quoc Khanh
    Duong Viet Thong
    Nguyen The Vinh
    [J]. Acta Applicandae Mathematicae, 2020, 170 : 319 - 345
  • [45] Modified subgradient extragradient method to solve variational inequalities
    Muangchoo, Kanikar
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 25 (02): : 133 - 149
  • [46] New extragradient-type methods for solving variational inequalities
    Bnouhachem, Abdellah
    Fu, Xiao-Ling
    Xu, M. H.
    Sheng Zhaohan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (08) : 2430 - 2440
  • [47] Modified Viscosity Subgradient Extragradient-Like Algorithms for Solving Monotone Variational Inequalities Problems
    Wairojjana, Nopparat
    Younis, Mudasir
    Rehman, Habib Ur
    Pakkaranang, Nuttapol
    Pholasa, Nattawut
    [J]. AXIOMS, 2020, 9 (04) : 1 - 19
  • [48] A Class of Novel Mann-Type Subgradient Extragradient Algorithms for Solving Quasimonotone Variational Inequalities
    Wairojjana, Nopparat
    Argyros, Ioannis K.
    Shutaywi, Meshal
    Deebani, Wejdan
    Argyros, Christopher I.
    [J]. SYMMETRY-BASEL, 2021, 13 (07):
  • [49] Two adaptive modified subgradient extragradient methods for bilevel pseudomonotone variational inequalities with applications
    Tan, Bing
    Cho, Sun Young
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 107
  • [50] Subgradient Extragradient Method with Double Inertial Steps for Variational Inequalities
    Yao, Yonghong
    Iyiola, Olaniyi S.
    Shehu, Yekini
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (02)