Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent

被引:15
|
作者
Rao, BP
Wehbe, A
机构
[1] Univ Louis Pasteur Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] Amer Univ Beirut, CAMS, Beirut, Lebanon
关键词
Kirchhoff plate; polynomial decay rate; strong stability; non-compactness;
D O I
10.1007/s00028-005-0171-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a direct approach, we establish the polynomial energy decay rate for smooth solutions of the equation of Kirchhoff plate. Consequently, we obtain the strong stability in the absence of compactness of the resolvent of the infinitesimal operator.
引用
收藏
页码:137 / 152
页数:16
相关论文
共 50 条
  • [1] Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent
    Bopeng Rao
    Ali Wehbe
    Journal of Evolution Equations, 2005, 5 : 137 - 152
  • [2] Strong stability of nonlinear semigroups with weak dissipation and non-compact resolvent-applications to structural acoustics
    Lasiecka, Irena
    Lu, Yongjin
    APPLICABLE ANALYSIS, 2010, 89 (01) : 87 - 107
  • [3] Search for the decay of non-compact geometries
    Stone, NTB
    Westfall, GD
    Gualtieri, EE
    Hannuschke, SA
    Lacey, R
    Lauret, J
    Llope, WJ
    Pak, R
    Bjarki, O
    VanderMolen, AM
    Yee, J
    ADVANCES IN NUCLEAR DYNAMICS 2, 1996, : 113 - 118
  • [4] Polynomial stability of transmission system for coupled Kirchhoff plates
    Wang, Dingkun
    Hao, Jianghao
    Zhang, Yajing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (04):
  • [5] REEB STABILITY FOR NON-COMPACT LEAVES
    INABA, T
    TOPOLOGY, 1983, 22 (01) : 105 - 118
  • [6] LOJASIEWICZ INEQUALITY FOR POLYNOMIAL FUNCTIONS ON NON-COMPACT DOMAINS
    Dinh Si Tiep
    Ha Huy Vui
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (04)
  • [7] Strong submeasures and applications to non-compact dynamical systems
    Truong, Tuyen Trung
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (01) : 287 - 309
  • [8] Positivity certificates and polynomial optimization on non-compact semialgebraic sets
    Ngoc Hoang Anh Mai
    Jean-Bernard Lasserre
    Victor Magron
    Mathematical Programming, 2022, 194 : 443 - 485
  • [9] Positivity certificates and polynomial optimization on non-compact semialgebraic sets
    Mai, Ngoc Hoang Anh
    Lasserre, Jean-Bernard
    Magron, Victor
    MATHEMATICAL PROGRAMMING, 2022, 194 (1-2) : 443 - 485
  • [10] On Polynomial Optimization Over Non-compact Semi-algebraic Sets
    Jeyakumar, V.
    Lasserre, J. B.
    Li, G.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (03) : 707 - 718