Polynomial stability of transmission system for coupled Kirchhoff plates

被引:0
|
作者
Wang, Dingkun [1 ]
Hao, Jianghao [1 ]
Zhang, Yajing [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Coupled Kirchhoff plates; Fractional damping; Polynomial decay; Optimality; ABSTRACT SYSTEM; OPTIMAL DECAY; STABILIZATION;
D O I
10.1007/s00033-024-02287-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic behavior of transmission system for coupled Kirchhoff plates, where one equation is conserved and the other has dissipative property, and the dissipation mechanism is given by fractional damping (-Delta)2 theta vt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )<^>{2\theta }v_t$$\end{document} with theta is an element of[12,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in [\frac{1}{2},1]$$\end{document}. By using the semigroup method and the multiplier technique, we obtain the exact polynomial decay rates, and find that the polynomial decay rate of the system is determined by the inertia/elasticity ratios and the fractional damping order. Specifically, when the inertia/elasticity ratios are not equal and theta is an element of[12,34]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in [\frac{1}{2},\frac{3}{4}]$$\end{document}, the polynomial decay rate of the system is t-1/(10-4 theta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t<^>{-1/(10-4\theta )}$$\end{document}. When the inertia/elasticity ratios are not equal and theta is an element of[34,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in [\frac{3}{4},1]$$\end{document}, the polynomial decay rate of the system is t-1/(4+4 theta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t<^>{-1/(4+4\theta )}$$\end{document}. When the inertia/elasticity ratios are equal, the polynomial decay rate of the system is t-1/(4+4 theta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t<^>{-1/(4+4\theta )}$$\end{document}. Furthermore it has been proven that the obtained decay rates are all optimal. The obtained results extend the results of Oquendo and Su & aacute;rez (Z Angew Math Phys 70(3):88, 2019) for the case of fractional damping exponent 2 theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\theta $$\end{document} from [0, 1] to [1, 2].
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Polynomial stability for a system of coupled strings
    Rzepnicki, Lukasz
    Schnaubelt, Roland
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (06) : 1117 - 1136
  • [2] Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent
    Bopeng Rao
    Ali Wehbe
    [J]. Journal of Evolution Equations, 2005, 5 : 137 - 152
  • [3] Polynomial energy decay rate and strong stability of Kirchhoff plates with non-compact resolvent
    Rao, BP
    Wehbe, A
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2005, 5 (02) : 137 - 152
  • [4] On the asymptotic stability for Kirchhoff plates with viscoelastic dissipation
    Franchi, Franca
    Lazzari, Barbara
    Nibbi, Roberta
    [J]. MECCANICA, 2018, 53 (1-2) : 295 - 304
  • [5] On the asymptotic stability for Kirchhoff plates with viscoelastic dissipation
    Franca Franchi
    Barbara Lazzari
    Roberta Nibbi
    [J]. Meccanica, 2018, 53 : 295 - 304
  • [6] Isogeometric-Meshfree Coupled Analysis of Kirchhoff Plates
    Zhang, Hanjie
    Wang, Dongdong
    Liu, Wei
    [J]. ADVANCES IN STRUCTURAL ENGINEERING, 2014, 17 (08) : 1159 - 1176
  • [7] Polynomial stability of a coupled system of wave equations weakly dissipative
    Santos, Mauro Lima
    Rocha, M. P. C.
    Gomes, S. C.
    [J]. APPLICABLE ANALYSIS, 2007, 86 (10) : 1293 - 1302
  • [8] A general stability result for a nonlinear viscoelastic coupled Kirchhoff system with distributed delay
    Apalara, Tijani A.
    Soufyane, Abdelaziz
    [J]. AFRIKA MATEMATIKA, 2022, 33 (01)
  • [9] STABILITY FOR A COUPLED SYSTEM OF WAVE EQUATIONS OF KIRCHHOFF TYPE WITH NONLOCAL BOUNDARY CONDITIONS
    Ferreira, Jorge
    Pereira, Ducival C.
    Santos, Mauro L.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,
  • [10] A general stability result for a nonlinear viscoelastic coupled Kirchhoff system with distributed delay
    Tijani A. Apalara
    Abdelaziz Soufyane
    [J]. Afrika Matematika, 2022, 33