Spintronic Devices as Key Elements for Energy-Efficient Neuroinspired Architectures

被引:0
|
作者
Locatelli, Nicolas [1 ]
Vincent, Adrien F. [1 ]
Mizrahi, Alice [1 ,3 ,4 ]
Friedman, Joseph S. [1 ]
Vodenicarevic, Damir [1 ]
Kim, Joo-Von [1 ]
Klein, Jacques-Olivier [1 ]
Zhao, Weisheng [1 ,2 ]
Grollier, Julie [3 ,4 ]
Querlioz, Damien [1 ]
机构
[1] Univ Paris 11, CNRS, Inst Elect Fondamentale, F-91405 Orsay, France
[2] Beihang Univ, Spintron Interdisciplinary Ctr, Beijing 100191, Peoples R China
[3] CNRS Thales, Unite Mixte Phys, F-91767 Palaiseau, France
[4] Univ Paris 11, F-91767 Palaiseau, France
来源
2015 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE) | 2015年
关键词
MAGNETIC TUNNEL-JUNCTIONS; SPIN-TORQUE; MEMORY; MEMRISTOR; CIRCUIT; SYNAPSE; NETWORK;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Processing the current deluge of data using conventional CMOS architectures requires a tremendous amount of energy, as it is inefficient for tasks such as data mining, recognition and synthesis. Alternative models of computation based on neuroinspiration can prove much more efficient for these kinds of tasks, but do not map ideally to traditional CMOS. Spintronics, by contrast, can bring features such as embedded nonvolatile memory and stochastic and memristive behavior, which, when associated with CMOS, can be key enablers for neuroinspired computing. In this paper, we explore different works that go in this direction. First, we illustrate how recent developments in embedded nonvolatile memory based on magnetic tunnel junctions (MTJs) can provide the large amount of nonvolatile memory required in neuro-inspired designs while avoiding Von Neumann bottleneck. Second, we show that recently developed spintronic memristors can implement artificial synapses for neuromorphic systems. With a more groundbreaking design, we show how the probabilistic writing of single MTJ bits can efficiently replace multi-level weighting for some classes of neuroinspired architectures. Finally, we show that a special class of MTJs can exhibit the phenomenon of stochastic resonance, a strategy used in biological systems to detect weak signals. These results suggest that the impact of spintronics extends beyond the traditional standalone and embedded memory markets.
引用
收藏
页码:994 / 999
页数:6
相关论文
共 50 条
  • [21] Energy-Efficient System Design for IoT Devices
    Jayakumar, Hrishikesh
    Raha, Arnab
    Kim, Younghyun
    Sutar, Soubhagya
    Lee, Woo Suk
    Raghunathan, Vijay
    2016 21ST ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2016, : 298 - 301
  • [22] Energy-Efficient Security in Implantable Medical Devices
    Daniluk, Krzysztof
    Niewiadomska-Szynkiewicz, Ewa
    2012 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2012, : 773 - 778
  • [23] Energy-efficient Computing for Embedded and IoT Devices
    Mishra, Prabhat
    Shrivastava, Aviral
    Panda, Preeti Ranjan
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2019, 13 (06): : 415 - 416
  • [24] Energy-Efficient Spectrum Sensing for IoT Devices
    Dao, Nhu-Ngoc
    Na, Woongsoo
    Tran, Anh-Tien
    Nguyen, Diep N.
    Cho, Sungrae
    IEEE SYSTEMS JOURNAL, 2021, 15 (01): : 1077 - 1085
  • [25] Energy-efficient network memory for ubiquitous devices
    Fryman, JB
    Huneycutt, CM
    Lee, HH
    Mackenzie, KM
    Schimmel, DE
    IEEE MICRO, 2003, 23 (05) : 60 - 70
  • [26] Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing
    陈亚博
    杨晓阔
    闫涛
    危波
    崔焕卿
    李成
    刘嘉豪
    宋明旭
    蔡理
    Chinese Physics Letters, 2020, (07) : 174 - 178
  • [27] Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing
    陈亚博
    杨晓阔
    闫涛
    危波
    崔焕卿
    李成
    刘嘉豪
    宋明旭
    蔡理
    Chinese Physics Letters, 2020, 37 (07) : 174 - 178
  • [28] Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing
    Chen, Ya-Bo
    Yang, Xiao-Kuo
    Yan, Tao
    Wei, Bo
    Cui, Huan-Qing
    Li, Cheng
    Liu, Jia-Hao
    Song, Ming-Xu
    Cai, Li
    CHINESE PHYSICS LETTERS, 2020, 37 (07)
  • [29] Exploiting silicon photonics for energy-efficient heterogeneous parallel architectures
    Bartolini, Sandro
    Garcia, Jose M.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (15): : 2489 - 2491
  • [30] Survey of Techniques and Architectures for Designing Energy-Efficient Data Centers
    Shuja, Junaid
    Bilal, Kashif
    Madani, Sajjad A.
    Othman, Mazliza
    Ranjan, Rajiv
    Balaji, Pavan
    Khan, Samee U.
    IEEE SYSTEMS JOURNAL, 2016, 10 (02): : 507 - 519